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KoBaaeBcokuii C.B. (/Jonbacvra depoicasna mawmunobdyoisna akademis, m. Kpamamopcok-
Tepnoninw, Ykpaina)

XXIII Mizknapoana Haykosa kondepenniss «<HEMPOMEPEKHI TEXHOJIOI'II TA IX
3ACTOCYBAHHS - HMTi3-2024».

laHoBHI KOJIerH, YYACHUKHU Ta rocti KoHdepeHuii!

Bin imeni opranizaniiinoro komitery mupo Bitato Bac Ha XXIII MixHapoaHiii HayKoBii
KoH(pepentii "HelipomepexHi TexHOIOTIi Ta ixX 3acrocyBaHHs". Lle Bu3Ha4UHa MO y HAYKOBOMY Ta
TEXHIYHOMY CBITI, iIKa 00’ €JHY€ TPOBIIHUX YUEHUX, JOCIITHUKIB, IH)KEHEPIB 1 MPAKTHKIB 13 PI3HUX
KyTOUYKiB CBITYy. Bala npucyTHICTh CHOTO/IHI € CBIIYEHHSM CIUIBHOI METH — CIPHUSTH PO3BUTKY
TEXHOJIOTi MaiOyTHBOTO, $IKi 3MIHIOIOTH HE JIMIIE HAyKy Ta IPOMHCIIOBICTh, ajle U Hame
MOBCSK/ICHHE KUTTH.

HeiipomepeskHi TeXHOJIOTIT € OTHUM 13 HaUMEePCIEKTUBHILINX IHCTPYMEHTIB Cy4acCHOCTI /st
peaizanii iHHOBAIIH y Pi3HHUX ramy3sx eKOHOMIKH. IX OTeHIian monsrae y 31aTHOCTI KapAHHAIBHO
3MIHIOBATH MIIXOJH JI0 BUPILMICHHS CTPATETIYHUX 3a]ad, 3a0e3neuytoun e(heKTUBHICTh, TOUHICTD i
ajanTuBHICTh. CHOTO/HI BOHHM CTalOTh OCHOBOIO JUIS aBTOMATH3allii MPOIECiB, aHANI3y JaHUX 1
IPOTHO3YBAHHS TPEH/IIB, 110 € KPUTUYHO BAXKJIMBUM Y JUHAMIYHOMY CBITI.

ABToMaTH3alisi BHPOOHMYMX JIHIA TaKOX € BaXJIMBUM HampsMoM. Helipomepexi
ONTHMI3YIOTh TTApaMETPH MPOLIECIB Y peaTbHOMY Yaci, 3a0€3Meuyr0un BUCOKY SKIiCTh MPOAYKIIIi Ta
Q/IaNITYIOYUCh JI0 3MIHHUX yMOB. Hampukinaa, MeToaw HaBUaHHS 3 MiAKPIMJICHHAM O3BOJSIOTH
CHCTEMaM CaMOCTIMHO pearyBaTH Ha 3HOIICHICTh OOJIAJJHAHHS UM 3MiHY XapaKTEPUCTHK CHPOBHHH.
BuxopucraHHs 3ropTKOBUX HEHpOMeEpex IJs aHajizy 300pakeHb aBTOMATH3Y€ KOHTPOJb SKOCTI,
BUSIBIISIIOYY HABITh HAMEHII ASEKTH.

VY MapKeTHHIy Ta yHpaBJliHHI JIaHI[IOTaMH ITOCTayaHHs HelipoMmepexi 3a0e3MeuyoTh aHami3
BEJIMKUX 00CATIB JaHUX, 1110 JO3BOJIE€ IPOrHO3YBaTH MOBEAIHKY CII0KMBAU1B, ONITUMI3yBaTH 3aracu
W cTBOproBaTH TepcoHanizoBaHi mnpomno3uilii. Hampukman, mozemi GPT i BERT ctBOproots
IHTEPAKTUBHUM KIIE€HTCHKUN JIOCBA, MIABHILYIOYM JOSIBHICTH 1 mpojaaxi. i mpoMucCIoBUX
HiAMPUEMCTB 1€ 03HAYAE MOKIIMBICTh IIBUIKOI aJanTariii 10 HOBUX pPUHKOBHX BUMOT.

Jlia Ykpainu HelipoMepexH1 TEXHOJIOTIT € YHIKaJIbHOK MOXKIIMBICTIO 1IHTErpyBaTu [H1ycTpito
4.0, mo 6a3yeThcs Ha aBTOMaTH30BaHuX pimeHHsax 1 loT, ta migrorysarucsa no Inayctpii 5.0, ska
aKIEHTY€E yBary Ha TapMOHi1 JIIOJUHH i MamuH. BoHM O3BOJISIOTH CTBOPIOBATH JIFOMHOIICHTPUYHI
pILIEHHS, SIK-OT PO3YMHI MiCTa YU aBTOMATHU30BaHI CHUCTEMHU OXOPOHH 3J0pOB’s, 3a0e3Meuyrouu
€KOJIOT1YHY CTaJIICTh.

BinHOBJEHHS NPOMMCIOBOrO, OCBITHHOIO Ta HAYKOBOIO MOTEHIIaNy YKpaiHW TaKOX
MOXJIUBE 3aBJSIKM HEWpoMepekaMm. Y TMPOMHUCIOBOCTI II€ CHpPHS€ MOJEpHI3aIli oO0JiaHaHHA U
MIJBUIICHHIO e(eKTUBHOCTI. B OCBITI aganTuBHI muaTdopMu 3a0e3MeyyloTh MiAr0TOBKY (axiBIliB
JUIsL BUCOKOTEXHOJIOTIYHMX Taiy3eil, a B Haylll BEJUKI JaHl MPUCKOPIOIOTH (yHIaMEHTaNbHI
JOCIIJIKEHHS.

Takum 4MHOM, HEHpoMeEpex HI TEXHOJIOTil CTal0Th KIOYOBUM (PAKTOPOM EKOHOMIYHOIO
3pocTaHHs, TpaHC(OpMalii TPOMMCIOBOCTI Ta MiJBMIIEHHS SKOCTI KMTTS. IX BIPOBaIKEHHS
3abe3neuye GyHIAMEHT JJIs1 IHHOBAIIIH 1 BIJMOBIAa€ BUKIUKAM CYy4acHOCTI.

Kondepenuis, siky MU ChOrOJHI BIAKPUBAEMO, MPHUCBSYEHA OOTOBOPEHHIO MEPEIOBHX
JOCTIKEeHb, IHHOBaLlI} Ta MPaKTUYHUX pillieHb Y cepl HelipomepekHUX TeXHOooT1i. Lle yHikanbHa
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wiatdopma, J1e MOENHYIOThCS TEOPETUYHI OCHOBHU, 1HXEHEPHI PO3POOKH Ta MIDKAUCIUILTIHAPHUN
MAX1T.

[{poropiunnii 30ipHUK HAYKOBHX Ipalb KOH(EpeHLi Bpaxkae CBOEI PiI3HOMAHITHICTIO. Y
HbOMY IPEJCTaBICHO OUIbII 45 myOmikamiid, SKi 1eMOHCTPYIOTh INIMOMHY 1 IUPOTY AOCIIIKEHD Y
cdepi HelipoMepek. MU TaKoX 3 TOPIICTIO MOYKEMO CKa3aTH, 10 KOH(PEPEHIis CTaia MailTaHIuKOM
JUTSE MDKHAPOIHOI CITIBITpaIli. YYacHUKHY 3 OLTBII HiXK JECATH KpaiH JUISTHCS CBOIMU JIOCSTHEHHSMU,
JOCBIZIOM 1 OaueHHsIM MaiOyTHBOrO. Lle He JuIe MOXIUBICTh MPE3EHTYBATH CBOI pOOOTH, ane i
3HaWTH MApTHEPIB Ui CHOUIBHUX JIOCHI/KEHb, 3al04YaTKyBaTH HOBI IPOEKTH Ta CIPHATH
dbopMyBaHHIO TTI00aTHHOI MEPEXKi 3HAHB.

CporonHi nepe HaMHu CTOITh 3aBJaHHS HE JIMIIE OOTOBOPUTH CyYaCHHM CTaH HAayKH, aje i
OKpECJIUTH IUTIXH 11 po3BUTKY. Hexall 1151 KoH(epeHIis cTaHe JHKepesioM HaTXHEHHsI, HOBUX 111ei Ta
pileHb, AKi JOMOMOXYTh CTBOPUTH TEXHOJIOTIYHO JIOCKOHAJIE MaiiOyTHE.

lupo Gakaro BCiM ydaCHHKaM IUTITHOI poOOTH, 3MICTOBHHX MCKYCild Ta HOBUX HAYKOBUX
BiIKpHTTiB. Pazom Mu popMyeMo HayKOBY CHUIBHOTY, 3[JaTHY BIUIMBATH HA PO3BHUTOK CYyYacHOTO
CBITY.

Dear Colleagues, Participants, and Guests of the Conference!

On behalf of the Organizing Committee, | am honored to welcome you to the XXIII
International Scientific Conference "Neural Network Technologies and Their Applications.” This
event represents a significant milestone in the scientific and technical community, bringing together
leading scientists, researchers, engineers, and practitioners from around the globe. Your presence here
today reflects our shared mission — to advance future technologies that transform not only science
and industry but also our everyday lives.

Neural network technologies are among the most promising tools of our time for
implementing innovations across various economic sectors. Their potential lies in their ability to
fundamentally change approaches to solving strategic problems, ensuring efficiency, precision, and
adaptability. Today, they form the foundation for process automation, data analysis, and trend
forecasting, which are critically important in our rapidly evolving world.

Another important application area is the automation of production lines. Neural networks
optimize process parameters in real-time, maintaining high product quality and adapting to changing
conditions. For example, reinforcement learning methods allow systems to independently respond to
equipment wear or changes in raw material properties. The use of convolutional neural networks for
image analysis also automates quality control, detecting even the smallest defects.

In marketing and supply chain management, neural networks enable the analysis of large
datasets from sources such as online sales or social media. This helps predict consumer behavior,
optimize inventory, and create personalized offers. Models like GPT and BERT enhance the customer
experience, boosting loyalty and sales. For industrial enterprises, this means the ability to quickly
adapt production lines to new market demands.

For Ukraine, neural network technologies present a unique opportunity to integrate Industry
4.0, based on automated solutions and 10T, and prepare for Industry 5.0, which emphasizes harmony
between humans and machines. They enable the creation of human-centered solutions, such as smart
cities and automated healthcare systems, while ensuring ecological sustainability.



The restoration of Ukraine’s industrial, educational, and scientific potential is also achievable
through neural networks. In industry, they drive equipment modernization and productivity
improvements. In education, adaptive platforms prepare specialists for high-tech fields, while in
science, big data accelerates fundamental research.

Thus, neural network technologies are becoming a key factor in economic growth, industrial
transformation, and improving quality of life. Their implementation lays the foundation for
innovation and addresses contemporary challenges.

The conference we are inaugurating today is dedicated to discussing cutting-edge research,
innovations, and practical solutions in the field of neural network technologies. It is a unique platform
where theoretical foundations, engineering developments, and interdisciplinary approaches converge.

This year’s conference proceedings are impressive in their diversity, featuring over 45
publications that demonstrate the depth and breadth of research in the field. We are also proud to note
that this conference serves as a platform for international collaboration. Participants from more than
ten countries are sharing their achievements, experiences, and visions for the future. This is not only
an opportunity to present one’s work but also to find partners for joint research, initiate new projects,
and contribute to the formation of a global knowledge network.

Today, we are tasked not only with discussing the current state of science but also with
outlining its future directions. May this conference be a source of inspiration, new ideas, and solutions
that help create a technologically advanced future.

I sincerely wish all participants productive work, meaningful discussions, and groundbreaking
scientific discoveries. Together, we are building a scientific community capable of influencing the
development of the modern world.

With respect,

Sergiy Kovalevskyy

Chair of the Organizing Committee,
Doctor of Technical Sciences, Professor
Donbas State Engineering Academy
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Andrij Medvid, Vitaliy Yakovyna (Lviv Polytechnic National University, Lviv, Ukraine)

ROBOT SELF COLLISION PREDICTION USING KOLMOGOROV-ARNOLD
NETWORKS

Abstract: Collision detection is essential for ensuring the safety of robotic manipulators, particularly when
robotic arms operate within complex environments. Self-collision detection, involving contacts between various parts of
a robotic arm or between the arm and its base, often represents a computational bottleneck for path planning.
Conventional physics-based and geometric collision-checking approaches, such as those using PyBullet, offer high
accuracy but can be computationally expensive, limiting their utility for real-time applications. To address this challenge,
we present a novel approach employing Kolmogorov-Arnold Networks (KAN) to predict self-collisions for a robotic
manipulator mounted on a mobile base. Using a dataset of 10 million randomly generated states, labeled as colliding or
non-colliding via the PyBullet library, we trained KAN implementation with modified parameters, including a spline
order of 2 and grid size of 4. Our model achieved over 98% prediction accuracy on a held-out test set while providing
significant speed improvements when using batching. Specifically, the KAN model processed approximately 93,728 test
states per second, which is more than 20 times faster than the PyBullet library. Key contributions of this work include the
application of KAN for fast self-collision prediction, a comparison of its performance with fully-connected networks and
conventional simulation-based methods. This study underscores the effectiveness of neural network-based approaches
for balancing speed and accuracy in collision detection, offering a scalable solution for complex robotic applications like
trajectory planning.

Keywors: robotic manipulators, Kolmogorov-Arnold Networks (KAN), collision detection, machine learning.

1. Introduction

Collision detection is critical to ensure the safe operation of systems with robotic
manipulators, especially when robotic arms interact with their environment. Self-collision can be
defined as a situation where different parts of a robotic arm come into contact with each other or with
the robot's base. Collision detection is the most time consuming part of the most robotic arm path
planning methods. Conventional collision-checking algorithms often rely on physics simulations or
geometric models, such as those implemented using libraries like PyBullet [2]. While these
approaches provide high accuracy, they can be computationally expensive, especially when applied
to large numbers of states. Real-time applications, such as robotic path planning, require faster and
more scalable methods to estimate potential collisions while maintaining reasonable accuracy.

In recent years, machine learning techniques have been explored as an alternative to traditional
physics-based simulation methods for predicting collisions. In this work Kolmogorov-Arnold
Network (KAN) [1] was trained to predict collisions between arm, arm tool and robot base. Our
choice of network architecture reasoned by the ability of KAN to approximate complex, nonlinear
functions with high precision. In this study, we utilize an efficient KAN implementation [3] to predict
self-collisions for a robotic manipulator mounted on a moving base.

To train the KAN model, we generated a dataset comprising 10 million random arm states
sampled uniformly across joint limits. Each state was labeled as either colliding or non-colliding
based on comprehensive checks using PyBullet simulations. The model's performance was evaluated
on a held-out test set, achieving over 98% accuracy in predicting self-collisions. Furthermore, our
approach demonstrated significant speed improvements when evaluating large batches of states
compared to traditional methods.

The primary contributions of this paper are as follows:

) We introduce the application of KAN for efficient self-collision prediction of
the robot.
) We compare the predictive performance and computational speed of our

approach with physics-based simulation methods.
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° We demonstrate the practical utility of using KAN for preliminary collision
estimation, making it suitable for applications such as trajectory planning where rapid
assessments of multiple states are necessary.

The remainder of this paper is structured as follows: Section 2 reviews related work in
collision detection for robotic systems. Section 3 outlines our methodology, including data generation
and the KAN architecture used. Section 4 presents the results of our experiments, while Section 5
discusses the implications and limitations of our approach. Finally, Section 6 concludes the paper
with a summary of findings and potential future work.

2. Related Work

In recent years, neural networks have been increasingly applied to collision detection in
robotic systems, offering promising alternatives to traditional model-based methods. This section
reviews notable studies that have utilized neural network architectures for collision detection,
summarizing their methodologies and key findings.

Sharkawy and Aspragathos (2018) developed a neural network-based approach for human-
robot collision detection [4]. They designed a multi-output neural network trained using data from
the coupled dynamics of a manipulator, both with and without external contacts. The network utilized
intrinsic joint position and torque sensors to detect unwanted collisions and identify the specific
collided link. This method demonstrated effective collision detection capabilities, enhancing safety
in human-robot interactions.

Czubenko and Kowalczuk (2021) proposed a simple neural network architecture for collision
detection in collaborative robots [5]. They implemented a virtual force and torque sensor using a
neural network, which was tested on the CURAG robot prototype. The study compared four different
approaches: auto-regressive, recurrent neural network, convolutional long short-term memory, and
mixed convolutional LSTM network (MC-LSTM). The MC-LSTM architecture achieved the highest
effectiveness, with a mean absolute prediction error of approximately 22 Nm and a collision detection
F1 score of 0.85.

Xu et al. (2020) presented a deep learning approach for collision detection in industrial
collaborative robots [6]. They designed a deep neural network model to learn robot collision signals
and recognize collision occurrences. This data-driven method unified feature extraction from high-
dimensional signals and decision processes, demonstrating improved collision detection performance
in industrial settings.

In the article "Neural Network Design for Manipulator Collision Detection Based Only on the
Joint Position Sensors" by Sharkawy, Koustoumpardis, and Aspragathos (2020), the authors present
a neural network-based method for detecting collisions in robotic manipulators using only joint
position sensor data [7]. The proposed approach eliminates the need for additional force or torque
sensors, making it cost-effective and simplifying integration. The neural network learns to identify
collisions based on variations in joint positions caused by external contacts. Experimental validation
demonstrated the approach's capability to accurately detect collisions, offering a promising solution
for improving the safety of robotic systems.

These studies highlight the potential of neural network-based methods to enhance collision
detection in robotic systems, offering improvements in detection accuracy, robustness, and
computational efficiency over traditional approaches.

3. Methodology

Robot Model and Problem Setup
In this work we are training a neural network to predict self collisions of a robot. We used a
design of a robot produced by Somatic Holdings LTD. It's a bathroom cleaning robot and it consists
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of a mobile robot platform, 7-dof robotic arm and tools (like sprayer, vacuum, blower, etc) installed
on a platform. Robotic arm could pick up one of these tools at a time and manipulate it.

Robot manipulates in a dense and dynamic environment so it should check for collisions with
a lot of objects and a part of this problem is also to check self collisions of a robot (collision between
platform, arm picked tool and arm with itself). Collision checking is a time consuming problem so
we trained a neural network to predict self collisions faster.

Data Generation and Labeling

We generated a dataset of 10 million test cases with a C++ code using PyBullet library. One
test case consists of arm state (7 float angles of arm joints) and a label (0.0 if no collision in this state
and 1.0 if there is at least one collision). Each arm state was generated uniformly in every joint limits
of a xArm7 (robotic arm installed on a robot). Joint limits of xArm7 you may find in table 1:

Table 1. Joint limits for XArm7 robotic arm [8

Joint number 0 1 2 3 4 5 6
Minimum angle -360° -118° -360° -11° -360° -97° -360°
Maximum angle 360° 120° 360° 225° 360° 180° 360°

Resulting dataset was split into training and testing parts in proportion of 80/20.

Kolmogorov-Arnold Networks (KAN) Implementation

We used an “efficient KAN” implementation of the Kolmogorov-Arnold Network (KAN) [3],
with minor adjustments to the default parameters. Specifically, we set the spline order to 2 and the
grid size to 4. The training was conducted using a batch size of 1024 and an initial learning rate of
0.005, which was decayed every 10 steps with a gamma value of 0.9997. The mean squared error
(MSE) criterion was used as the loss function.

Prior to being fed into the model, the input arm joint angles were transformed by replacing
each angle with its sine and cosine values to better capture the periodic nature of the data. The KAN
architecture utilized consisted of layers with sizes defined as:

[2 x joints_count, 128, 128, 128, 1].

Performance Metrics

To evaluate the performance of our Kolmogorov-Arnold Network (KAN) implementation for
predicting self-collisions in the robotic manipulator, we employed several key metrics to assess model
accuracy, computational efficiency, and overall robustness.

First, the output of the neural network was thresholded at 0.5, such that predictions below this
threshold were classified as 0.0 (indicating no collision) and predictions equal to or above 0.5 were
classified as 1.0 (indicating a collision). This binary classification enabled straightforward evaluation
of the model’s predictive capabilities.

We calculated the counts of true positives (correctly predicted collisions), true negatives
(correctly predicted non-collisions), false positives (incorrectly predicted collisions), and false
negatives (missed collisions) using the test portion of our dataset. From these values, we derived key
performance metrics, including prediction accuracy, which was computed as the percentage of correct
predictions among all test cases.

To assess computational efficiency, we measured the inference time of the KAN model and
compared it against the time required for traditional collision checking using the PyBullet physics
simulation library. All tests were performed on an NVIDIA GeForce RTX 3050 GPU to ensure
consistent and reliable performance benchmarks.
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4. Results and Analysis

After 15 epochs of training on 8 million training cases, we achieved the following results on
our 2 million test cases: 991,509 true positive cases, 978,147 true negative cases, 15,502 false
negative cases, and 14,842 false positive cases. The test data is well-balanced between positive and
negative cases, allowing for a robust evaluation of the model’s predictive performance. The prediction
accuracy was calculated as follows:

P B TP + TN ~ 991,509 + 978,147 00848
CCUracy = Tp X TN + FP + FN _ 991509 + 978147 + 15,502 + 14842 =
= 98.48%

The total inference time for processing the 2 million test states with a batch size of 1024 was
21.3383 seconds, resulting in a processing rate of approximately 93,728 test states per second. This
represents a significant improvement in speed compared to the generation of test data using the
PyBullet library, which processed approximately 4,460 states per second. However, when the batch
size was reduced to 1, the network's performance dropped considerably to 1,140 states per second,
demonstrating the importance of batch processing for maximizing inference efficiency.

Model comparison

To compare the efficiency of KAN and standard fully-connected networks we repeat the same
training process but with a few different fully-connected architectures. In this section we represent
the comparison with fully-connected architecture which achieved the best results among others.

The network takes a 14-dimensional input (which is sine and cosine transformations of 7 joint
angles) and processes it through three fully-connected layers. Each layer is followed by a nonlinear
activation function, except the final layer, which uses a sigmoid activation for binary classification.
The detailed architecture is as follows:

1. Input Layer: Accepts a 14-dimensional input vector representing joint angle features.

2. First Hidden Layer: A fully-connected layer with 2048 neurons, followed by a SiLU
(Sigmoid Linear Unit) activation function.

3. Second Hidden Layer: A fully-connected layer with 512 neurons, followed by a SiLU
activation function.

4. Output Layer: A fully-connected layer with a single neuron, followed by a sigmoid
activation function to output a predicted value between 0 and 1.

KAN outperformed fully-connected networks for self-collision prediction, achieving higher
accuracy (98.48% vs. 98.0%) and comparable inference times. Comparison of different performance
parameter you may find in table 2:

Table 2. Results of training KAN and fully-connected network

Model True True False False Accurac | Inference
Positive | Negative | Positive Negative |y, % Time
cases cases cases cases (batch size =
1024),
seconds
KAN 991509 978147 14842 15502 98.48 21.34
Fully- 988752 971271 19849 20128 98.0 16.6
connected
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5. Discussion

The results of our experiments highlight the potential of using Kolmogorov-Arnold Networks
(KAN) for predicting self-collisions in robotic manipulators. By leveraging an efficient
implementation of KAN with spline order 2 and grid size 4, we achieved a high prediction accuracy
of 98.48% on a well-balanced dataset consisting of 10 million states (8 million training states and 2
million test states).

The main advantage of our approach lies in its computational efficiency during batch
processing. When evaluating test states with a batch size of 1024, our KAN-based model processed
approximately 93,728 states per second — substantially outperforming traditional collision-checking
methods using the PyBullet physics simulation library, which achieved a throughput of around 4,460
states per second. This remarkable speedup highlights the potential of KAN for tasks that require
rapid evaluation of large numbers of states, such as trajectory optimization, motion planning, and
safety assessments for robots operating in dynamic environments.

However, our results also indicate certain limitations and areas for improvement. Notably, the
network's performance dropped significantly when the batch size was reduced to 1, processing only
1,140 states per second. This suggests that the efficiency gains from the usage of neural networks are
highly dependent on batch processing, and further optimization may be required to enhance single-
state inference performance. This limitation could impact scenarios where real-time evaluation of
individual states is necessary, such as adaptive control in rapidly changing environments.

Moreover, Kolmogorov-Arnold Networks (KAN) demonstrated advantages over standard
fully-connected networks in this study, particularly for predicting self-collisions in robotic
manipulators. The KAN architecture, leveraging its structured decomposition of multivariate
functions, achieved higher accuracy with comparable training time and infer time. These results
highlight KAN's ability to balance computational efficiency and predictive accuracy compared to
fully-connected networks.

It is important to emphasize that the use of KAN for collision prediction is particularly suitable
for applications where a small trade-off in accuracy is acceptable in exchange for significant gains in
speed. For example, rapid collision assessment can be used as a preliminary filter in trajectory
planning, reducing the computational burden on more accurate but slower physics-based methods.
Future research may explore hybrid approaches that combine KAN-based predictions with traditional
collision-checking algorithms to strike an optimal balance between speed and accuracy.

6. Conclusion

Our work demonstrates that KAN-based models can be an effective tool for efficient self-
collision prediction in robotic systems. The proposed approach provides significant computational
speedups while maintaining a high level of predictive accuracy, making it suitable for applications
requiring rapid evaluation of large numbers of states. The demonstrated capability to process over
93,000 states per second in batch mode represents a significant improvement over traditional physics-
based methods, showcasing the potential of KAN to accelerate tasks such as trajectory planning,
safety verification, and dynamic motion adjustments.

Despite these strengths, there are areas for further exploration and improvement. Enhancing
the model's performance for single-state inference could expand its applicability to scenarios that
demand real-time, state-by-state evaluations. Additionally, exploring alternative representations of
input data and refining model architectures could lead to further improvements in accuracy and
generalization.

Looking ahead, we see potential in integrating KAN-based predictions with hybrid systems
that combine neural network inference with traditional collision-checking algorithms. Such
combinations could provide an optimal balance between speed and precision, enabling more efficient
and robust solutions for complex robotic systems. As robotic applications become increasingly
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sophisticated and widespread, methods that balance computational efficiency and predictive accuracy
are likely to play a key role in advancing the capabilities and safety of autonomous systems.

References

1. Ziming Liu, Yixuan Wang, Sachin Vaidya, Fabian Ruehle, James Halverson, Marin Soljacié, Thomas Y. Hou,
Max Tegmark: “KAN: Kolmogorov-Arnold Networks”, 2024; arXiv:2404.19756.

2. “Bullet  Collision  Detection &  Physics  Library”. www.pybullet.org.  Available  at:
https://pybullet.org/Bullet/BulletFull/index.html. (Accessed: 18 November 2024).

3. Blealtan Blealtan/efficient-kan: An efficient pure-PYTORCH implementation of Kolmogorov-Arnold Network
(KAN)., GitHub. Available at: https://github.com/Blealtan/efficient-kan (Accessed: 18 November 2024).

4. Sharkawy, Abdel-Nasser & Aspragathos, Nikos. (2018). Human-Robot Collision Detection based on Neural
Networks. International Journal of Mechanical Engineering and Robotics Research. 7. 150-157.
10.18178/ijmerr.7.2.150-157.

5. Czubenko, M.; Kowalczuk, Z. A Simple Neural Network for Collision Detection of Collaborative Robots. Sensors
2021, 21, 4235. https://doi.org/10.3390/s21124235

6. Y.J.Heo, D. Kim, W. Lee, H. Kim, J. Park and W. K. Chung, "Collision Detection for Industrial Collaborative
Robots: A Deep Learning Approach,” in IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 740-746, April
2019, doi: 10.1109/LRA.2019.2893400.

7. Sharkawy A-N, Koustoumpardis PN, Aspragathos N. Neural Network Design for Manipulator Collision
Detection Based Only on the Joint Position Sensors. Robotica. 2020;38(10):1737-1755.
d0i:10.1017/S0263574719000985

8. “The difference between UFACTORY xArm5, UFACTORY xArm6 and UFACTORY xArm7”. UFACTORY,
www.ufactory.cc. Available at: http://help.ufactory.cc/en/articles/4491842-the-difference-between-ufactory-
xarm5-ufactory-xarmé-and-ufactory-xarm?7. (Accessed: 18 November 2024).

16


https://doi.org/10.3390/s21124235

UDC 004.8:629.8-519.2

Hesheva Hanna (Dmytro Motornyi Tavria State Agrotechnological University, Zaporizhzhya,
Ukraine)

ANALYSIS OF THE EFFICIENCY OF NEURAL NETWORKS IN AUTONOMOUS
CONTROL SYSTEMS COMPARED TO TRADITIONAL APPROACHES

Abstract: This study investigates the advantages and disadvantages of using neural networks (NNs) in autonomous
control systems for mobile technological machines compared to traditional algorithmic approaches. While traditional
methods excel in predictable environments with predefined rules, neural networks demonstrate superior adaptability,
scalability, and robustness in dynamic and unstructured settings. This paper conducts a comparative analysis, focusing
on performance metrics such as decision-making accuracy, computational efficiency, scalability, and robustness under
uncertain conditions. A case study of autonomous vehicles is included to demonstrate the practical implications of both
approaches.

Keywords: neural networks, autonomous control, mobile machines, traditional methods, adaptability, scalability,
robustness, decision-making.

1. Introduction

Autonomous control systems are increasingly employed across industries, including
transportation, agriculture, logistics, and defense. These systems traditionally rely on deterministic
algorithms for decision-making and control. However, with the advent of machine learning (ML),
especially neural networks, a paradigm shift is occurring. NNs offer the ability to learn from data and
adapt to changing environments, making them appealing for complex tasks. This paper examines the
comparative efficiency of neural networks and traditional approaches, highlighting the trade-offs in
various performance domains.

2. Traditional Approaches in Autonomous Control Systems

Traditional approaches to autonomous control systems have been the backbone of technological
automation for decades. These methods rely on deterministic logic and well-defined mathematical
frameworks, which are particularly effective in structured environments. Below, the key components
of these approaches are detailed further to showcase their strengths, applications, and limitations.

2.1 Predefined Rules and Logic-Based Models

Predefined rule-based systems operate by following explicit, manually coded rules and
conditions. These systems are constructed using if-then-else logic, which provides clear, deterministic
pathways for decision-making.

Characteristics:

— Deterministic Nature: These systems perform reliably in scenarios with well-understood and
predictable dynamics.

— Ease of Implementation: The logic is straightforward to program and debug, making it highly
accessible for practical applications.

- Examples: Early traffic signal controllers, robotic arms in factories, and decision-making in
simple automated vehicles.

Applications:

- Environments where the rules are static and the external variables are controlled, such as
assembly lines or warehouse automation.

- Systems requiring strict safety guarantees, such as medical robots performing predefined
tasks.

Limitations:

—Rule-based systems struggle in environments with high variability or uncertainty. For
example, a robot navigating a cluttered room with unexpected obstacles would need an unmanageable
number of rules to handle all possible scenarios.

- They lack adaptability, as any change in the environment requires manual updates to the rules.

17



2.2 Path Planning Algorithms

Path planning algorithms are crucial in autonomous systems, enabling machines to navigate
from a start point to a goal while avoiding obstacles. These algorithms use geometric and heuristic
methods to determine the most efficient route.

Key Algorithms:

1. Dijkstra's Algorithm:

- Description: A graph-based algorithm that finds the shortest path between two nodes in a
weighted graph.

- Advantages: Guarantees the optimal path if all edge weights are non-negative.

- Applications: Navigation systems in robotics and GPS for finding the shortest driving route.

- Limitations: Computationally expensive for large graphs due to exhaustive exploration.

2. A (A-Star) Algorithm:*

- Description: An extension of Dijkstra's algorithm that incorporates a heuristic function to
prioritize exploration, making it faster.

- Advantages: Balances optimality and computational efficiency by focusing on promising
paths first.

— Applications: Widely used in real-time robotic navigation, video game Al, and unmanned
aerial vehicle (UAV) route planning.

- Limitations: Performance heavily depends on the quality of the heuristic function.

3. RRT (Rapidly-Exploring Random Trees):

—Description: A probabilistic algorithm designed to handle high-dimensional spaces by
incrementally building a tree structure that explores the environment.

- Advantages: Well-suited for navigating complex environments, especially with dynamic
obstacles.

— Applications: Used in robotic arm trajectory planning, self-driving cars, and drone navigation.

- Limitations: The solution is not always optimal, and computation can become intensive in
highly constrained environments.

Strengths of Path Planning Algorithms:

- Proven mathematical foundations ensure predictable and safe navigation.

—Highly effective in structured or semi-structured environments, such as indoor robotics or
urban roads with mapped terrain.

Challenges:

- They require precise and often pre-existing maps of the environment.

- Struggle in dynamic or unknown environments without constant updates.

- Limited ability to handle ambiguous or incomplete data, such as uncertain obstacle locations.

2.3 Control Strategies

Once the path is planned, control strategies ensure the system follows it accurately. These
strategies handle the system’s movement, stability, and interaction with its environment.

Notable Control Strategies:

1. PID (Proportional-Integral-Derivative) Controllers:

—Description: A control loop feedback mechanism that adjusts the system's output to match a
desired setpoint by minimizing the error between the current state and the target.

Components:

—Proportional Term: Directly proportional to the error, providing immediate corrective action.

—Integral Term: Accounts for accumulated errors over time, addressing steady-state offsets.

—Derivative Term: Predicts future error trends to counteract overshooting.

Advantages:

- Simplicity and robustness make PID controllers widely used.

—Effective for maintaining stability and responsiveness in systems like drones, automated
vehicles, and industrial robots.

Limitations:

—Performance degrades in non-linear or highly dynamic systems.

—Requires manual tuning of parameters, which can be time-consuming and context-dependent.

2. Model Predictive Control (MPC):
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—Description: An advanced control technique that predicts future system behavior and
optimizes control actions over a time horizon.

—Advantages: Ideal for complex, multi-variable systems with constraints, such as controlling a
swarm of drones or optimizing energy usage in electric vehicles.

—Limitations: Computationally intensive, requiring significant processing power.

3. Bang-Bang Control:

—Description: A simple on-off control strategy, where the system switches between extreme
states to reach a desired outcome.

—Applications: Thermostats and simple robotics.

—Limitations: Not suitable for systems requiring precision or smooth operation.

Strengths of Control Strategies:

—Provide stability and responsiveness, ensuring that the system operates reliably within its
physical constraints.

—Well-suited for tasks where the environment is largely predictable and changes are gradual.

—Challenges:

—Performance is highly dependent on accurate system modeling.

—Complex, dynamic systems often require more adaptive or intelligent methods, such as neural
networks.

2.4 Summary of Traditional Approaches

Traditional approaches, with their emphasis on predefined logic, well-tested algorithms, and
structured control strategies, have been pivotal in advancing autonomous technologies. They are
reliable, computationally efficient, and easy to implement in controlled settings. However, they face
significant limitations in environments where uncertainty, dynamic obstacles, and incomplete data
dominate. These shortcomings pave the way for more adaptive and intelligent solutions, such as
neural networks, to handle the increasing complexity of modern autonomous systems.

This detailed exploration sets the stage for comparing these traditional methods with neural
network-based approaches in the subsequent sections of the study.

3. Neural Networks in Autonomous Control Systems

Neural networks, particularly deep learning models, have gained traction due to their ability to
process large datasets and discover patterns. Popular NN architectures in autonomous systems
include:

—Convolutional Neural Networks (CNNSs): For image recognition and obstacle detection.

—Recurrent Neural Networks (RNNs): For sequential data and predictive control.

—Reinforcement Learning (RL): For decision-making under uncertainty.

Key benefits of NNs:

1. Adaptability: Ability to learn from real-world data and generalize to new scenarios.
2. Robustness: High tolerance for noise and uncertainty in sensor inputs.

3. Automation: Reduces reliance on human-crafted rules.

Challenges include:

—High Computational Costs: Training and inference require significant resources.

—Opagqueness: Neural networks are often black boxes, complicating debugging and validation.

—Data Dependency: The performance of NNs heavily relies on the quality and quantity of
training data.

4. Comparative Analysis

4.1 Decision-Making Accuracy
—Traditional Methods: Perform well in controlled environments but struggle with variability.
—Neural Networks: Achieve higher accuracy in recognizing patterns and anomalies in dynamic
environments (e.g., pedestrian detection in autonomous vehicles).
4.2 Computational Efficiency
—Traditional Methods: Computationally lightweight, enabling faster real-time responses.
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—Neural Networks: Require GPUs and optimized frameworks but can be accelerated with
techniques like model compression.

4.3 Robustness to Uncertainty

—Traditional Methods: Limited by predefined conditions, leading to failures in unpredictable
scenarios.

—Neural Networks: Reinforcement learning-based approaches demonstrate robust performance
in uncertain and unstructured environments.

4.4 Scalability

—Traditional Methods: Face exponential complexity in multi-agent or large-scale systems.

—Neural Networks: Can scale effectively with parallel architectures and training on distributed
systems.

5. Case Study: Autonomous Vehicles

Objective: To compare the performance of traditional and NN-based control systems in a self-
driving vehicle navigation task.

Setup:

—Scenario: Urban navigation with dynamic obstacles.

—Traditional Approach: Rule-based control combined with A* path planning.

—Neural Network Approach: Reinforcement learning using a Deep Q-Network (DQN).

Results:

1. Accuracy: The NN system avoided 15% more obstacles than the traditional system.
2. Adaptability: The NN system adjusted to unexpected obstacles 50% faster.

3. Efficiency: Traditional systems achieved lower latency, but the NN system

demonstrated improved long-term learning.

6. Discussion

The findings highlight the trade-offs between traditional and NN-based approaches. While
traditional systems remain valuable for tasks requiring high predictability and low latency, neural
networks excel in dynamic, complex, and data-rich environments. The combination of both
approaches—hybrid systems—may provide the optimal balance of performance, efficiency, and
adaptability.

7. CONCLUSION

This study underscores the transformative potential of neural networks in autonomous control
systems, particularly for tasks requiring high adaptability and robustness. Future research should
focus on developing hybrid frameworks that leverage the strengths of both paradigms, optimizing
computational efficiency, and addressing challenges related to explainability and data dependence.
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CLOUD-BASED LANDMINE DETECTION SERVICE WITH MESSENGER BOT
INTEGRATION

Abstract. The problem of landmine recognition is critically important in Ukraine, where millions of unexploded
ordnances pose a significant threat. This study describes the architecture and implementation of a cloud-based landmine
detection service accessible through messenger bots. This approach leverages the capabilities of smartphones and cloud
technologies to provide a widely accessible and efficient tool for landmine identification. The system utilizes Google
Cloud Functions for image processing and machine learning model execution, with a messenger bot serving as the user
interface. The bot facilitates user interaction by sending photos of suspicious objects for analysis and returning
recognition results. This comprehensive approach aims to improve the safety and efficiency of demining operations while
raising public awareness about the dangers of landmines.

Keywords: landmine recognition, cloud-based detection, messenger bots, smartphones, machine learning,
google cloud functions, demining operations, public awareness

1. Problem statement

The ongoing aggression of russia in Ukraine has left a devastating legacy of landmines and
unexploded ordnance, posing a significant and persistent threat to human life and hindering post-
conflict recovery efforts. Current estimates indicate that a vast area of the country, up to 128,000
square kilometers of land and 13,000 square kilometers of water, is contaminated [1]. Traditional
methods for detecting and clearing these explosive remnants are often slow, dangerous, and resource-
intensive, highlighting the urgent need for innovative solutions that can accelerate the demining
process while ensuring the safety of personnel and civilians.

This study aims to address this critical challenge by developing and evaluating a novel cloud-
based landmine detection service that leverages the accessibility of messenger bots and the power of
artificial intelligence. By harnessing the capabilities of widely available smartphones and the
scalability of cloud computing, this research seeks to provide a user-friendly and efficient tool for
landmine identification. The proposed solution allows users to simply submit photos of
suspicious objects to a messenger bot for analysis, with the service employing sophisticated machine
learning models to provide real-time assessments of the likelihood of a landmine.

To achieve this objective, the study focuses on the following key tasks:

— Develop a cloud-based landmine detection service using Google Cloud Platform [2].

— Design and implement a messenger bot [3] interface for user interaction with the service.

— Integrate the system with Google Gemini [4] to provide users with additional information
about detected landmines.

This research seeks to contribute to the advancement of landmine detection technology by
providing a practical, accessible, and efficient solution that can be readily deployed in real-world
scenarios. By empowering individuals with the ability to quickly and accurately identify potential
explosive threats, this study aims to support humanitarian demining efforts, enhance public safety,
and contribute to the long-term recovery of Ukraine.

2. Related work

This research builds upon previous work [5-6] that explored the development of machine
learning models for landmine recognition, including the use of data augmentation and 3D-printing to
overcome data scarcity. While these studies demonstrated the potential of Al for landmine detection,
a key challenge remained: how to deliver these powerful models to those who need them most, in the
field. This requires a solution that is readily accessible, user-friendly, and adaptable to diverse
environments and user needs.

Existing mobile applications in the domain of mine action primarily focus on landmine
awareness and reporting [7], but lack the capability for automated landmine recognition. This gap
presents a significant opportunity to leverage the ubiquity of smartphones and the power of cloud
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computing to create a more proactive and efficient approach to landmine detection.

3. Unresolved parts of the problem

While previous research [5-6] has demonstrated the potential of artificial intelligence and
machine learning for landmine detection, including the use of data augmentation and 3D-printing to
create robust training datasets, a critical gap remains in translating these advancements into practical
tools readily available to those working on the ground.

This study addresses the limitations of existing landmine detection methods by developing a
novel cloud-based service that is:

— Highly accessible: Available through widely used messenger apps, enabling access on
virtually any smartphone with an internet connection.

— User-friendly: The messenger bot interface provides a simple and intuitive way to interact
with the service, requiring minimal technical expertise.

— Real-time capable: Leverages cloud computing to provide rapid image processing and
analysis, delivering near real-time results.

— Seamlessly integrated: Utilizes existing messenger platforms to integrate with
communication channels already used by demining teams and stakeholders.

4. Purpose of the work and setting of tasks
By creating and testing a novel cloud-based landmine detection service that makes use of
messenger bot accessibility and artificial intelligence, this project seeks to address this pressing issue.
This research aims to offer an effective and user-friendly solution for landmine identification by
utilizing the scalability of cloud computing and the capabilities of widely available mobile devices.
This approach offers significant advantages over traditional methods, which are often slow
and resource-intensive. By combining the power of Al, cloud computing, and messenger bots, this
research provides a more accessible, efficient, and user-friendly solution to the urgent challenge of
landmine detection.
To achieve this, the study focused on the following tasks:
e Develop a cloud-based landmine detection service.
e Design and implement a messenger bot interface.
o Integrate the system with Google Gemini.

5. System design and implementation

The landmine detection service utilizes Google Cloud Functions to execute machine learning
models and process images efficiently. A messenger bot acts as the user interface, facilitating
interaction with the service. Users submit images of suspicious objects to the bot, which then sends
them to the cloud for analysis. The results, including the likelihood of a landmine and its potential
type, are returned to the user through the bot. This architecture allows for seamless integration with
various messenger platforms and ensures flexibility for future adaptations.

5.1. System Architecture
The system is designed with a modular architecture, comprising three main components:

e Messenger Bot: This component serves as the user interface, allowing users to interact with
the service through a messenger app. It receives images from users, sends them to the cloud
for processing, and returns the analysis results.

e Cloud Functions: These functions, hosted on the Google Cloud Platform, handle image
processing and analysis. They receive images from the messenger bot and invoke the
landmine recognition module.

e Landmine Recognition Module: This module utilizes pre-trained machine learning models
and the YOLO algorithm [8] to detect and classify landmines in the images. The inference
process is implemented using the Roboflow [9] service, which is used to process model
requests.
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This modular design allows for independent development and optimization of each
component, ensuring flexibility and scalability. The use of cloud functions enables efficient resource
utilization and fast response times, while the messenger bot interface provides a user-friendly and
accessible way to interact with the service (Fig. 1).

O
|

9

Figure 1. Architecture of system

5.2. Implementation Details

The messenger bot is developed using Python and a suitable bot framework [10]. It
communicates with the Google Cloud Platform via a webhook, enabling seamless communication
between the user interface and the cloud-based processing functions.

The Cloud Functions are also written in Python and utilize the Google Cloud Functions
framework. Upon receiving an image from the messenger bot, a Cloud Function is triggered to verify
the image format and perform pre-processing steps. It then invokes the landmine recognition module,
passing the processed image as input.

The landmine recognition module employs a pre-trained YOLOv8 model, that is hosted on
Roboflow platform. The model is fine-tuned on a diverse dataset of landmine images. This dataset
includes real-world images and synthetic images generated through data augmentation and 3D-
printed replicas.

5.3. Integration with Google Gemini
To provide users with more information about detected landmines, the system integrates with

Google Gemini. When the recognition module identifies a potential landmine, the bot automatically
queries Google Gemini with the identified landmine type. Google Gemini then provides a concise
summary (Fig. 2) of information about the landmine, which may include:

e Country of origin

e Main characteristics (type, weight, size)

e Method of use (laying and activation)

e Additional information (links, installation specifics)
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This integration enhances the user's understanding of the potential danger and facilitates
informed decision-making. The messenger bot is currently focused on interacting with demining
professionals. For this purpose, the bot is integrated with a specialized forum for deminers. When the
bot detects a landmine, it provides information about it and links to a relevant discussion on the forum.
This allows deminers to quickly exchange information, coordinate their actions, and jointly develop
strategies. The bot could also be used for a wider audience, such as in cooperation with international
organizations. In this case, instead of linking to a specialized forum, the bot could provide links to
relevant articles on landmine safety, contacts of emergency services, and instructions on how to act
when a suspicious object is detected. This would raise public awareness and promote safer behavior
around landmines. The bot supports two interface languages: Ukrainian and English. The interface
language is determined automatically based on the user's language. In addition to the main recognition
function, the bot offers several additional features, such as the ability to request to add a landmine,
view a list of recognized landmines, and provide feedback.

CONCLUSIONS

The developed messenger bot demonstrates the potential of using modern technologies, such
as machine learning models and cloud platforms, to address the urgent problem of landmine detection.
The bot's integration with Google Cloud Platform and Roboflow API that runs YOLOv8 model
ensures high recognition accuracy and fast data processing. The use of Telegram as an interface
makes the bot accessible to a wide range of users, and integration with Google Gemini allows
providing additional information about the detected landmine. The bot can be a useful tool for both
professional deminers and ordinary citizens who may encounter explosive devices. It will help
improve the efficiency and safety of the demining, as well as raise awareness of landmine safety. The
project is under active development, and we are constantly working to improve the bot and enhance
the accuracy of the recognition models. One of the key aspects of this process is analyzing errors and
adding relevant images to the model's training set. This allows the system to “learn from its mistakes”
and improve the efficiency of landmine detection with each iteration.

In the future, it is planned to expand the bot's functionality by adding the ability to recognize
more types of landmines, as well as integrate it with other platforms and messengers.
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ARTIFICIAL INTELLIGENCE AS A DRIVER OF TERRITORIAL COMMUNITY
DEVELOPMENT

Abstract: In today's world, artificial intelligence (Al) has become a key tool for transforming social systems
and governance. This article examines the potential of using Al for the development of territorial communities. Al-
based solutions are proposed for analysis, planning, and resource optimization, improving citizens' quality of life, and
ensuring sustainable community development. Special attention is paid to the impact of intelligent systems on human
capital, management processes, and social cohesion.

Keywords: artificial intelligence, territorial communities, human capital, sustainable development, innovation,
optimization.

Sustainable development of a state is impossible without purposeful and systematic efforts
aimed at building and strengthening human potential, which forms the foundation for the effective
functioning of all levels of public administration. This task is equally important for large cities as
well as for the smallest settlements in the country. However, while in metropolises, issues of staffing
are mostly addressed thanks to the concentration of educational, professional, and social resources,
the newly formed united territorial communities face a critical scale of staffing crises. An acute
shortage of qualified specialists capable of ensuring effective governance creates significant
challenges for these communities. Consequently, the development of human potential becomes
particularly important under the conditions formed by the administrative-territorial reform [1].
Demographic reproduction and effective regulation of migration processes must become strategic
tasks of national significance, implemented with consideration of regional specificities. At the same
time, local self-government institutions must actively engage in this process, initiating and
implementing measures aimed at preserving and strengthening human potential. These challenges
require new approaches to governance, one of which is the integration of Al technologies.

Artificial intelligence opens new opportunities for the comprehensive development of
communities by providing tools for analysis, planning, resource optimization, and enhancing social
cohesion. With its ability to process vast amounts of data, Al facilitates informed decision-making
focused on long-term results. Al algorithms can automate decision-making processes, improve the
quality of forecasting, and ensure more efficient utilization of human potential.

In the field of staffing, Al helps address the issue of a shortage of qualified workers. Intelligent
systems can analyze labor market needs in real-time, identify training directions required to fill gaps,
and create personalized educational programs. Al-driven monitoring of labor market changes
promotes rapid professional reorientation, adapting the population to the new economic conditions.
Additionally, optimizing infrastructure solutions and ensuring resource efficiency are crucial areas of
Al application. Smart urban infrastructure planning includes optimizing logistics, urban transport,
and energy consumption, based on real data and forecasts. Digital twins of communities enable the
modeling and testing of management decisions in a virtual environment, avoiding the risk of real
losses.

Social cohesion in communities also benefits from new tools enabled by artificial intelligence.
Analytical platforms allow for assessing the level of citizen engagement, identifying problem areas,
and fostering the development of communities. European experience in using artificial intelligence
(Al) in the development of territorial communities demonstrates the practical effectiveness and
significant potential of these technologies in addressing pressing social, economic, and environmental
challenges.
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In France, artificial intelligence (Al) plays a key role in planning public transport systems [2].
By utilizing large datasets on transport flows, population mobility, and environmental indicators, Al
helps design more efficient transport routes, reducing travel time and minimizing congestion.
Specifically, intelligent systems analyze real-time data on road congestion and suggest alternative
routes for both public and private transportation. Additionally, Al is employed to model the
environmental impact of transport systems. These models enable cities to implement strategies for
reducing CO: emissions, such as electrifying public transport or creating networks of bicycle lanes.
In Paris, such initiatives have already reduced transport emissions by 20% over the past five years.

In Germany, Al is actively used to analyze and evaluate the efficiency of infrastructure
investments in local communities [3]. Digital platforms have been developed to integrate financial,
demographic, and infrastructure data, allowing local governments to assess the impact of investments
on community development. For instance, Al platforms study the relationship between investments
in road infrastructure and the economic activity of local businesses, helping identify the most
promising areas for funding. These systems enable local governments to make data-driven decisions,
improving efficiency and reducing the risk of misusing funds.

In Sweden, the implementation of intelligent systems is focused on optimizing housing
construction and urban resource management processes [4]. Using Al, municipalities model various
development scenarios, considering factors such as population growth, housing demand,
infrastructure availability, and environmental impact. Integrated systems help forecast the need for
housing over the next decades, plan energy-efficient developments, and provide citizens with
affordable housing. For example, in Stockholm, Al is used to create "smart" districts featuring energy-
saving systems, automated water supply management, and waste disposal. Additionally, Al helps
Swedish municipalities allocate resources more effectively. By utilizing predictive algorithms,
municipalities can plan the supply of energy, water, and other resources according to peak loads and
demand fluctuations, avoiding overuse and ensuring sustainable development.

In the United Kingdom, artificial intelligence is widely used to optimize energy consumption
and improve social services in communities [5]. Intelligent systems analyze real-time energy usage
data, enabling demand forecasting and preventing grid overloads. For instance, in London, "smart
grids" automatically adjust electricity supply based on consumption in different parts of the city.
Furthermore, in the field of social services, Al is used to analyze data on public health, social
assistance, and employment. In Manchester, for example, an Al-based system helps allocate social
resources more quickly to support low-income families, people with disabilities, and the unemployed.
This significantly improves the efficiency of budget use and ensures more targeted assistance.

Estonia is a pioneer in using Al to digitize public services, and this experience is actively
applied in local communities [6]. Intelligent systems support electronic voting, access to
administrative services, and automatic updates of citizen records. This significantly reduces
bureaucratic procedures and ensures transparency in governance. In particular, small Estonian
communities have developed Al-based chatbots that help citizens obtain answers to administrative
inquiries without visiting physical offices. This improves service accessibility for residents in remote
areas and promotes inclusivity in interaction with local government bodies.

In the Netherlands, where a significant portion of the territory lies below sea level [7], Al is
used for water resource management and flood prevention. Intelligent systems monitor the condition
of dams, rivers, and canals, predicting potential water level rises by analyzing weather data and
climate change models.

Finland uses artificial intelligence to improve its healthcare system [8]. Communities have
developed Al-based medical platforms that analyze patients’ medical histories, test results, and
provide personalized recommendations for disease prevention. For example, Helsinki operates an
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early diagnosis system that uses machine learning algorithms to identify cardiovascular disease risks.
Additionally, Al optimizes the operations of medical institutions by forecasting hospital and clinic
workloads. This ensures an even distribution of patients and reduces waiting times.

Conclusion. The integration of Al into territorial community management processes opens
new opportunities for sustainable development, improving the quality of life, and efficient resource
utilization. Intelligent systems have the potential to significantly reduce costs, enhance social
cohesion, and create new opportunities for innovative growth. By adapting European experiences,
Ukraine can successfully overcome current challenges and ensure effective community development.
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INNOVATIVE APPROACHES TO LEARNING AND ADAPTIVE LEARNING

Abstract: Integrating adaptive and personalized learning strategies has become a transformative approach in
modern education, offering students a tailored experience that aligns closely with their unique learning needs,
preferences, and progress. Both methods focus on adjusting learning paths to optimize the effectiveness of education, yet
each has a distinct role. When combined, they create a dynamic system that can significantly enhance learning outcomes,
reduce achievement gaps, and foster a more inclusive and engaging learning environment.

Keywords: integrating adaptive and personalized learning, teaching, studies

1. INTRODUCTION

Innovative Approaches to Learning :

« Active Learning: Encourages student engagement through activities like group discussions,
problem-solving, and hands-on experiments, improving retention and critical thinking.

o Project-Based Learning (PBL): Involves students tackling real-world challenges, helping
them to apply theoretical knowledge practically. PBL fosters skills such as teamwork,
problem-solving, and creativity.

o Blended Learning: Combines in-person and online experiences, allowing for more flexible
pacing and access to resources. This approach often uses digital tools for assessments,
feedback, and self-paced study.

Adaptive Learning :

o Definition and Purpose: Adaptive learning uses technology to modify the delivery of
educational material based on a learner's current knowledge and performance. It’s widely used
in online platforms and learning management systems.

o How It Works: Adaptive systems analyze student progress, typically using Al algorithms, to
determine their strengths and areas for improvement. This real-time analysis adjusts the
complexity and type of content presented to optimize learning outcomes.

« Benefits: Provides a personalized experience that can help struggling students receive more
support while allowing advanced students to progress quickly.

Personalized Educational Programs :

e Individual Learning Plans (ILPs): Tailored to each student’s goals, strengths, and
weaknesses, ILPs are particularly effective in K-12 and higher education settings. They allow
for goals to be set, tracked, and adjusted based on progress.

« Data-Driven Insights: Personalized programs leverage data from assessments, attendance,
and student engagement to provide educators with insights into each student’s needs, leading
to targeted interventions.

o Competency-Based Learning: This model allows students to progress as they demonstrate
mastery, regardless of time, pace, or place. It's effective in vocational and adult learning,
helping learners acquire skills relevant to career paths.

Integrating Adaptive and Personalized Learning for Greater Impact :

o Adaptive and personalized learning are complementary. For example, an adaptive learning
platform could support a personalized educational program by continuously adjusting content
to align with a learner's ILP. This synergy maximizes learning efficiency and satisfaction,
particularly in environments with diverse learning needs.

These approaches together promote a more inclusive, engaging, and efficient educational experience
that’s increasingly valuable in today’s knowledge-driven world.
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2. INTEGRATING ADAPTIVE AND PERSONALIZED LEARNING FOR GREATER
IMPACT

Integrating adaptive and personalized learning strategies has become a transformative
approach in modern education, offering students a tailored experience that aligns closely with their
unique learning needs, preferences, and progress. Both methods focus on adjusting learning paths to
optimize the effectiveness of education, yet each has a distinct role. When combined, they create a
dynamic system that can significantly enhance learning outcomes, reduce achievement gaps, and
foster a more inclusive and engaging learning environment.

Adaptive learning is a technology-driven approach that modifies the presentation of educational
content in real-time, responding to a student’s ongoing performance and engagement levels. Adaptive
learning systems are often powered by artificial intelligence (Al) and machine learning algorithms
that analyze a range of data points, such as a student’s correct or incorrect answers, time spent on
each activity, and even the types of mistakes made. Based on this analysis, the system adjusts the
lesson difficulty, pacing, or type of content to best meet the student’s immediate needs.

For example:

o Real-time Feedback: Adaptive platforms provide instant feedback, helping students
understand their mistakes and correct them promptly. This minimizes frustration and
improves retention.

o Customized Difficulty: If a student consistently excels in a specific area, the system can
increase the difficulty level, challenging them to deepen their understanding. Conversely, if a
student struggles, the system may simplify content or offer additional support materials, such
as tutorials or hints.

Personalized learning takes a broader, holistic approach. It’s about tailoring the entire educational
experience—agoals, resources, pacing, and content—to fit an individual student’s preferences, needs,
and learning style. Unlike adaptive learning, which primarily operates through Al-driven adjustments,
personalized learning involves educators, instructional designers, and the learners themselves in
crafting a customized learning path. This often includes setting specific goals, selecting resources,
and modifying teaching strategies to align with the learner's strengths, challenges, and interests.
Components of personalized learning may include :

o Individual Learning Plans (ILPs): These are structured programs developed collaboratively
by educators, learners, and sometimes parents. ILPs set clear, individualized goals, learning
objectives, and timelines that guide a student’s academic journey.

o Competency-Based Progression: Personalized learning frequently incorporates competency-
based models, where students advance once they demonstrate mastery of a concept or skill,
rather than based on time spent on a subject.

o Flexible Learning Modalities: Personalized learning often supports different learning
modalities, such as visual, auditory, or kinesthetic, adapting materials to align with the
student’s preferred learning style.

Integrating adaptive learning into a personalized education plan can significantly enhance the benefits
of both approaches. Here’s how they can work in tandem for greater impact:

1. Data-Driven Personalization Adaptive systems continuously collect and analyze data on
student interactions. This data feeds into the personalized learning framework, allowing
educators to make informed decisions. For instance, if an adaptive learning platform identifies
that a student struggles with specific math concepts, this data can prompt a teacher to
incorporate supplemental lessons or alternative explanations into the student’s individual
learning plan.

2. Customized Pacing and Content Delivery One of the most significant advantages of this
integration is the ability to adjust pacing in real-time, respecting each student’s learning speed.
For instance, in a classroom with diverse learning abilities, the adaptive system can ensure
that advanced students continue progressing without waiting, while those who need additional
time receive targeted support to master foundational concepts. This individualized pacing
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prevents students from feeling rushed or held back, fostering a more productive and less
stressful learning environment.

Enhanced Student Engagement and Motivation Adaptive learning platforms help keep
students engaged by offering challenges suited to their current abilities. When combined with
a personalized learning approach, students not only see materials at an appropriate difficulty
level but also work toward goals that are meaningful to them. This synergy promotes intrinsic
motivation as students understand that their learning journey is unique and directly tied to
their individual aspirations and needs.

Empowering Educators with Actionable Insights Adaptive learning tools provide real-time
insights into student performance, giving educators valuable information that they can use to
support personalized interventions. For instance, teachers can receive alerts when a student is
consistently underperforming in a specific area, prompting timely, personalized assistance.
With a clearer understanding of each student’s strengths and weaknesses, teachers can adjust
lesson plans, group students strategically, and provide tailored support where it’s most
needed.

Developing Critical Thinking and Problem-Solving Skills The integration of adaptive and
personalized learning encourages a deeper, more active learning experience. By challenging
students to think critically and solve problems at their individual level, these approaches help
cultivate essential skills for the future. Personalized projects that build on concepts covered
in adaptive platforms can help students apply knowledge in real-world contexts, fostering a
higher level of cognitive engagement.

Building Lifelong Learning Skills Integrating these approaches fosters self-directed learning
and metacognitive skills, which are essential for lifelong learning. Adaptive systems provide
immediate feedback that encourages self-reflection and problem-solving. Simultaneously, a
personalized approach allows students to set goals and track their progress, teaching them
how to manage and take responsibility for their own learning journey. Together, these
methods help students become more independent and motivated learners.

Supporting Inclusive Education and Reducing Achievement Gaps Both adaptive and
personalized learning can help address the challenges faced by students from diverse
backgrounds. Adaptive systems ensure that no student falls behind, as they automatically
adjust to meet each learner's level, while personalized learning accommodates different
learning styles and goals. This combined approach can be particularly beneficial in diverse
classrooms, ensuring that all students have equal opportunities to succeed regardless of their
starting point.

While the integration of adaptive and personalized learning offers many benefits, it’s not without
challenges:

Infrastructure and Resource Requirements: Schools and institutions need sufficient resources,
including technology, training, and time, to implement these systems effectively.

Privacy and Data Security: With extensive data collection on student performance, schools
must ensure compliance with privacy standards and protect sensitive student information.
Balancing Automation and Human Interaction: Adaptive learning systems should
complement, not replace, the human element in teaching. Educators play an essential role in
personalizing learning and providing emotional and motivational support, which cannot be
fully replaced by Al.

3. INNOVATIVE APPROACHES TO LEARNING AND ADAPTIVE LEARNING

In the evolving landscape of education, traditional teaching methods are being complemented

and, in many cases, transformed by innovative approaches that focus on creating more engaging,
personalized, and effective learning experiences. These methods aim to cultivate not only academic
knowledge but also critical thinking, collaboration, creativity, and adaptability—skills essential for
success in today’s fast-paced world. Below is a deeper exploration of some of the most impactful and
innovative approaches to learning.
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Active learning shifts the focus from passive reception of information to active engagement with the
material. Instead of listening to a lecture, students are encouraged to participate through activities that
involve analyzing, discussing, or solving problems. This method has shown to improve retention and
understanding because students actively work with the concepts they are learning.

o Examples of Active Learning Strategies:

o Think-Pair-Share: Students think about a question individually, discuss it with a
partner, and then share their insights with the class. This approach helps students
process their thoughts and builds communication skills.

o Case Studies: By examining real-world examples, students apply theoretical concepts
to practical scenarios, which enhances critical thinking and decision-making abilities.

o Problem-Based Learning (PBL): Students are given a complex problem and must
work together to find a solution, often without direct guidance. This builds
independence, teamwork, and problem-solving skills.

Project-Based Learning is an approach where students work on a project over an extended period,
from several days to an entire term. These projects typically involve complex, real-world problems
or challenges, and require students to research, plan, and execute a solution. The process of working
on a project teaches students a range of valuable skills, such as time management, collaboration, and
critical thinking.

« How PBL Works:

o Choosing the Project: Ideally, projects are chosen based on students' interests,
making them more motivated to engage deeply with the topic.

o Research and Exploration: Students must conduct research, often requiring them to
go beyond the textbook and explore various sources, such as interviews, online
databases, and empirical experiments.

o Presenting Solutions: At the end of the project, students typically present their
findings or products to the class, a broader audience, or community members,
reinforcing their communication skills and giving them a sense of accomplishment.

« Benefits of PBL.: Project-based learning allows students to see the relevance of what they are
studying and understand its application in the real world. Additionally, PBL fosters a deeper
understanding of the subject matter, as students are not just memorizing facts but working
through challenges that require them to apply knowledge in practical ways.

Blended learning combines traditional face-to-face instruction with online or digital learning. This
approach leverages the strengths of both in-person and digital education, creating a more flexible and
adaptable learning environment.

e Blended Learning Models:

o Flipped Classroom: In this model, students learn new content at home through video
lectures, readings, or online modules, and then apply what they’ve learned in the
classroom through activities and discussions with their teacher and peers.

o Station Rotation: In a station rotation model, students rotate through different
learning stations, some of which are online, while others involve teacher-led
instruction or collaborative work.

o Self-Paced Learning: This model allows students to progress through online modules
at their own pace, with teachers available to provide support as needed.

o Advantages of Blended Learning:

o Flexibility: Students can learn at a pace that suits them, revisiting materials or moving
ahead as needed.

o Personalized Feedback: Online platforms can provide instant feedback, helping
students understand their mistakes and make adjustments in real-time.

o Improved Engagement: By incorporating various types of media, such as videos,
quizzes, and interactive simulations, blended learning keeps students engaged and
makes learning more dynamic.

Gamification integrates game-like elements into learning activities to increase motivation,
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engagement, and retention. By incorporating features like rewards, levels, and challenges, gamified
learning makes educational content more appealing and can be particularly effective for younger
students.

o Key Components of Gamified Learning:

o Points and Rewards: Students earn points or badges for completing tasks, which
gives them a sense of accomplishment and encourages continued effort.

o Levels and Progression: As students complete tasks, they can “level up” to more
challenging content, creating a structured progression that maintains interest.

o Competition and Collaboration: Some gamified learning experiences encourage
friendly competition between students or collaborative efforts to reach shared goals.

« Benefits of Gamification:

o Increased Motivation: The gaming elements make learning more enjoyable,
encouraging students to take on challenges and persist even when the material is
difficult.

o Immediate Feedback: In a gamified environment, students often receive immediate
feedback, which reinforces learning and enables quick corrections.

o Skill Building: Many educational games emphasize skills like problem-solving,
strategic thinking, and hand-eye coordination, which complement traditional learning
objectives.

Experiential learning is based on the principle that students learn best by doing. It emphasizes
hands-on experiences, reflection, and real-world applications, allowing students to learn through
direct involvement.

o Examples of Experiential Learning Activities:

o Internships and Apprenticeships: By working in a real job setting, students gain
practical skills and insight into their field of interest.

o Service Learning: This combines academic study with community service, helping
students apply their knowledge to help others while gaining an understanding of
societal issues.

o Simulations and Labs: Simulations in fields like science, engineering, and healthcare
allow students to apply theoretical knowledge in controlled, realistic settings.

e Advantages:

o Deeper Understanding: Hands-on experiences help students connect theoretical
concepts to real-world applications, deepening their understanding and memory
retention.

o Development of Soft Skills: Experiential learning develops skills such as
communication, empathy, adaptability, and resilience.

o Enhanced Career Readiness: By gaining real-world experience, students are better
prepared for professional roles, with practical skills that can be immediately applied.

Social and collaborative learning is based on the idea that learning is a social process. By engaging
in discussions, group work, and peer-to-peer interactions, students can deepen their understanding of
concepts, clarify misunderstandings, and build interpersonal skills.

o Collaborative Learning Techniques:

o Peer Teaching: Students take turns teaching each other, which reinforces their own
understanding and encourages cooperative learning.

o Group Projects: These projects require students to work together towards a common
goal, often requiring them to plan, delegate tasks, and resolve conflicts.

o Discussion Forums: Online or in-person discussion forums enable students to share
insights, ask questions, and learn from each other’s perspectives.

« Benefits of Social and Collaborative Learning:

o Enhanced Critical Thinking: By discussing different viewpoints, students develop
critical thinking skills and learn to evaluate arguments.
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o Increased Engagement: Working with peers can make learning more enjoyable and
motivating.

o Skill Building: Collaboration teaches students essential social skills, such as
communication, empathy, and teamwork.

Inquiry-based learning encourages students to ask questions and seek answers through
investigation, exploration, and research. This approach fosters curiosity and encourages a proactive
approach to learning, empowering students to become self-motivated, lifelong learners.

o Stages of Inquiry-Based Learning:

o Questioning: Students start by asking questions about a topic or problem.

o Research and Investigation: They gather information, conduct experiments, or
engage in discussions to explore potential answers.

o Solution or Conclusion: Based on their research, students draw conclusions or solve
the problem.

o Reflection: Students reflect on their learning experience and the knowledge they
gained, reinforcing the inquiry process.

« Benefits of Inquiry-Based Learning:

o Development of Research Skills: Students learn how to gather and evaluate
information, an essential skill for academic and professional success.

o Increased Curiosity and Independence: By guiding their own learning, students
develop a love for learning and the ability to learn independently.

o Improved Problem-Solving Abilities: Inquiry-based learning teaches students to
think critically and solve problems logically and creatively.

Adaptive learning is an advanced educational approach that leverages technology to create a
customized learning experience for each student. This method uses data-driven algorithms, artificial
intelligence (Al), and machine learning to assess individual student performance and adapt
instructional content in real time. By doing so, adaptive learning personalizes the pace, path, and
presentation of material to match each learner's strengths, weaknesses, preferences, and progress.
Core Principles of Adaptive Learning :

1. Personalization: At its core, adaptive learning is about creating a tailored learning
experience. The technology behind it collects data on how a student interacts with the content,
their accuracy, and speed in answering questions, as well as other factors. This allows the
system to present material that suits their current understanding, adjusting complexity, format,
or feedback as needed.

2. Real-Time Adjustment: Adaptive systems are designed to adjust the learning path based on
real-time feedback from students. As they progress through lessons, the software analyzes
their responses to continually provide content that aligns with their evolving level of
comprehension and ability.

3. Continuous Assessment: Rather than relying solely on traditional assessments, adaptive
learning platforms conduct continuous assessments. This means the software is constantly
monitoring students' interactions and progress, allowing it to identify and respond to learning
gaps or misunderstandings immediately.

4. Data-Driven Insights: Adaptive learning platforms rely heavily on data analytics to monitor
individual and group performance. This data can provide educators with actionable insights
into students’ progress, highlighting areas where they excel or need additional support.

The adaptive learning process involves several key components that work together to provide a

responsive learning experience:

1. Initial Diagnostic Assessment: Many adaptive platforms begin with an assessment to gauge
the student’s starting point. This baseline data helps the system understand the student’s initial
strengths and areas for improvement, creating a foundation for the personalized learning path.

2. Content Delivery and Interaction: Based on the diagnostic results, the system provides
tailored content, which could include videos, interactive quizzes, readings, or practice
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exercises. As the student interacts with the material, the platform continuously collects data
on their performance and engagement.

Real-Time Adjustments: Adaptive learning systems track metrics such as time spent on each
task, accuracy, the number of attempts needed, and patterns of responses. Using this
information, the platform can adapt the level of difficulty, suggest additional resources, or
offer hints when a student is struggling.

Ongoing Feedback and Support: Students receive immediate feedback, which is essential
for effective learning. If a student answers a question incorrectly, the system might provide
an explanation or guide them through a simpler problem before progressing. This feedback
loop ensures that students correct misunderstandings early, building a stronger foundation for
future learning.

Progress Monitoring and Reporting: Adaptive platforms provide both students and
educators with insights into performance. Teachers can use these reports to adjust
instructional strategies or group students for targeted support.

Adaptive learning offers numerous benefits for students, educators, and institutions alike:

1.

Enhanced Learning Outcomes: Adaptive learning systems identify gaps in understanding
early and adjust content to reinforce foundational concepts. This helps students develop a
strong grasp of essential skills before advancing to more complex topics, improving overall
learning outcomes.

Individualized Pacing: One of the most significant advantages of adaptive learning is that
students can learn at their own pace. High-performing students can move through material
more quickly, while those who need extra time or support aren’t left behind. This pacing
flexibility accommodates different learning speeds, reducing stress and boosting confidence.
Efficient Use of Time: Adaptive systems streamline the learning process by focusing on areas
where students need improvement. Rather than spending time on content they already
understand, students can concentrate on areas that require more attention, making their study
time more productive.

Increased Student Engagement: Adaptive learning platforms often use engaging, interactive
content that holds students' attention and makes learning more enjoyable. By adjusting to each
learner’s level, the system keeps content challenging but achievable, promoting intrinsic
motivation.

Immediate Feedback and Correction: The instant feedback that adaptive systems provide
helps students learn from their mistakes right away, improving retention and understanding.
Immediate feedback has been shown to enhance learning efficiency, as it prevents the
reinforcement of incorrect information and allows students to correct errors promptly.
Teacher Empowerment: Adaptive learning doesn’t replace educators; rather, it enhances
their ability to support each student effectively. Teachers receive data insights on individual
and group performance, allowing them to address learning gaps, identify trends, and provide
targeted instruction or enrichment activities.

Numerous technologies and platforms are available to support adaptive learning. These tools
often vary by subject, age group, and educational level but share common features, such as data
tracking, interactive content, and Al-powered adjustment algorithms. Some popular adaptive learning
platforms include:

1.

ALEKS (Assessment and Learning in Knowledge Spaces): This platform is widely used in
mathematics and science education. ALEKS assesses students’ current knowledge, identifies
gaps, and provides personalized learning paths to address those gaps.

Knewton: Knewton’s adaptive technology is integrated into various educational products,
offering personalized content recommendations and insights based on student performance.
Knewton’s platform supports a wide range of subjects and is used by educational institutions
worldwide.
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3. Smart Sparrow: This platform focuses on adaptive e-learning in higher education. It allows
instructors to create interactive and adaptive courseware, providing students with a
customized experience based on their unique needs and progress.

4. DreamBox Learning: Designed primarily for K-8 mathematics education, DreamBox
combines adaptive learning with gamification to create an engaging learning experience. The
system adjusts lessons in real-time to keep students challenged and motivated.

While adaptive learning has great potential, successful implementation requires thoughtful planning
and consideration:

1. Teacher Training: Teachers need to be familiar with adaptive learning tools to make the best
use of the data they provide. Proper training helps educators understand how to interpret
analytics, use insights for instruction, and monitor student progress.

2. Blending Adaptive Learning with Traditional Methods: Adaptive learning works best
when combined with traditional instructional methods. While adaptive platforms can provide
individualized practice, teachers still play an essential role in leading discussions, clarifying
complex concepts, and offering emotional and motivational support.

3. Ensuring Access to Technology: For adaptive learning to be effective, students must have
reliable access to technology, whether through school-provided devices or at-home access.
Ensuring digital equity is essential to prevent further disparities in learning opportunities.

4. Continuous Evaluation and Improvement: Institutions should regularly evaluate the
effectiveness of adaptive learning systems and make adjustments as needed. This may involve
collecting feedback from students and teachers, reviewing data on learning outcomes, and
updating content to align with curriculum standards.

Despite its benefits, adaptive learning also presents several challenges:

1. Privacy and Data Security: Adaptive learning platforms collect significant amounts of data
on student performance. Schools and institutions must ensure compliance with privacy
regulations and implement strong security measures to protect sensitive student information.

2. Risk of Over-Reliance on Technology: While adaptive systems are powerful tools, there is
a risk of over-relying on technology. Educators must strike a balance between digital
instruction and traditional teaching methods to provide a holistic learning experience.

3. Alignment with Learning Standards: Adaptive content must align with national and
regional educational standards. Institutions must ensure that adaptive platforms cover
essential learning objectives and offer a curriculum-aligned experience.

4. Addressing Different Learning Preferences: While adaptive systems adjust content based
on performance, they may not always account for different learning styles or preferences.
Integrating features that support visual, auditory, and kinesthetic learners can help make these
systems more inclusive.

As technology continues to advance, the potential of adaptive learning will expand further:

1. Al-Powered Improvements: Advances in Al and machine learning will enable even more
accurate and personalized learning experiences. Future systems may incorporate more
sophisticated algorithms that predict learning paths and provide tailored interventions with
increasing accuracy.

2. Integration with Virtual Reality (VR) and Augmented Reality (AR): Integrating VR and
AR into adaptive learning environments can provide immersive experiences that enhance
engagement, particularly in subjects that benefit from visualization, such as biology, history,
and engineering.

3. Cross-Disciplinary Applications: Adaptive learning may expand to cross-disciplinary
applications, helping students connect concepts across different subjects. For example, an
adaptive system might help a student struggling with reading comprehension in science by
connecting it to their strengths in a different subject, such as language arts.

4. Greater Accessibility and Inclusivity: Adaptive learning has the potential to become more
inclusive, with features designed to support students with disabilities or learning differences.
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Enhanced customization options could help address specific needs, providing an equitable
learning experience for all.

4. CONCLUSION

Integrating adaptive and personalized learning represents a significant advancement in
educational practice, enabling a tailored approach that can adapt to the unique needs and progress of
each student. Together, these methods foster a supportive, efficient, and engaging learning
environment that nurtures student potential and prepares them for future academic and career success.
As technology continues to evolve, the possibilities for combining adaptive and personalized learning
will only expand, paving the way for an increasingly inclusive and effective educational landscape.
Innovative approaches to learning are reshaping education by placing students at the center of the
learning process. Each method, from active and experiential learning to gamification and inquiry-
based strategies, offers unique benefits that can be adapted to different learning environments and
goals. By combining these approaches, educators can create a rich, diverse learning experience that
prepares students not just for exams, but for a lifetime of learning and personal growth. In the future,
these methods are likely to become even more integral to education, helping students develop the
skills they need to thrive in an increasingly complex world. Adaptive learning is revolutionizing
education by personalizing the learning journey for each student. This approach empowers learners
to progress at their own pace, providing just-in-time support and feedback that fosters understanding
and confidence.
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PERSONALIZED EDUCATIONAL PROGRAMS WITH Al

Abstract: Personalized educational programs are designed to meet the unique learning needs, goals,
preferences, and pace of each student. Unlike traditional "one-size-fits-all" methods, these programs use individualized
instruction strategies, adaptive technologies, and often data analytics to cater to the distinct requirements of every
learner. As technology and educational research continue to evolve, the future of personalized learning looks promising.
Advances in AI, machine learning, and data analytics will enable even greater customization, creating highly responsive

programs that can address each student's unique learning profile.
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1. INTRODUCTION

Personalized educational programs are designed to meet the unique learning needs, goals,
preferences, and pace of each student. Unlike traditional "one-size-fits-all" methods, these programs
use individualized instruction strategies, adaptive technologies, and often data analytics to cater to
the distinct requirements of every learner. The ultimate goal is to help students achieve their potential
by making education more relevant, engaging, and effective. Personalized educational programs have
the potential to transform learning for individuals across the lifespan, offering a pathway to a more
inclusive, engaging, and effective educational system. As the field of education continues to embrace
personalization, it promises a future where every learner’s potential can be unlocked and nurtured.
The rise of personalized educational programs signals a profound shift in how we understand and
approach learning. Traditional education systems, which largely focus on uniform curricula and
standardized assessments, often struggle to meet the diverse needs of individual learners.
Personalized education aims to address this by creating tailored pathways that consider each student’s
unique abilities, interests, pace, and goals. This shift has the potential to close educational gaps,
particularly for underserved or struggling students, by offering a level of attention and adaptation
previously unimaginable in conventional settings. Key to the success of personalized education are
the technological advancements that drive it. Through adaptive learning systems, students receive
real-time feedback and customized content that helps them engage deeply with material, learn more
efficiently, and achieve mastery at their own pace. The incorporation of data analytics and Al allows
for continuous adjustments, predicting learning challenges before they escalate and enabling targeted
interventions. Virtual and augmented reality add immersive experiences, bringing subjects to life and
making complex concepts easier to grasp, while gamification and interactive simulations transform
the learning process into an engaging journey. One of the most profound impacts of personalized
education is its focus on fostering lifelong learners. By nurturing critical skills such as self-directed
learning, problem-solving, and resilience, these programs prepare students not just academically, but
for real-world success. Learners who experience personalized education often gain greater self-
awareness and independence, learning to set and achieve personal goals. This adaptability is essential
in a world where industries are constantly evolving, and where the ability to learn and relearn is
invaluable.

2. COMPONENTS OF PERSONALIZED EDUCATIONAL PROGRAMS BY Al

Key Principles of Personalized Educational Programs :

1. Learner-Centered Approach: Personalized programs place the student at the center of the
learning experience. Each learner's interests, abilities, and career aspirations shape their
educational path, making learning more relevant and motivating.
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Flexible Curriculum: These programs are often flexible, allowing students to explore subjects
of interest or engage in different levels of difficulty based on their progress and preferences.
The curriculum may be modular or competency-based, giving students the freedom to work
on topics at a pace that suits them.

Adaptive and Differentiated Instruction: Teachers and educational platforms provide
differentiated instruction based on individual student needs. Adaptive technology plays a
significant role here, offering content adjustments and real-time responses to students'
strengths and weaknesses.

Goal-Oriented Learning: Personalized educational programs are structured around specific,
measurable learning goals. Students are often actively involved in setting these goals, which
helps foster accountability, self-direction, and motivation.

Continuous Feedback and Assessment: Ongoing assessments are used to track students'
progress and adjust learning paths accordingly. Frequent feedback allows students to
understand their progress, identify areas for improvement, and stay motivated throughout their
educational journey.

Student Autonomy: Personalized programs encourage students to take ownership of their
learning. Students may have the option to choose how they learn (e.g., through hands-on
projects, digital resources, or collaborative assignments), which fosters independence and
critical thinking.

Creating an effective personalized program requires a multi-faceted approach. The following
components are essential to building a program that truly adapts to each learner's needs:

1.

Individual Learning Plans (ILPs): Each student has a unique learning plan that outlines their
goals, strengths, areas for improvement, and preferred learning methods. ILPs are typically
developed with input from both students and educators, ensuring alignment with curriculum
standards while allowing for personal choice.

Competency-Based Learning: In competency-based models, students progress based on
mastery of a subject rather than time spent in the classroom. This allows students to move
through content at their own pace and ensures a deeper understanding before advancing to
more complex topics.

Customized Content and Resources: Personalized programs provide various types of learning
materials tailored to different learning styles and preferences. For example, students who
excel in visual learning might receive video-based content, while those who learn better
through reading may be offered more text-heavy materials.

Blended Learning: Blended learning combines traditional face-to-face instruction with online
resources, enabling personalized pacing and access to a broader range of materials. Students
can review content independently online, while in-person sessions focus on deepening
understanding and addressing specific questions.

Project-Based Learning (PBL): PBL is often integrated into personalized programs to give
students the opportunity to explore real-world problems and apply their knowledge in
meaningful ways. These projects are usually self-paced and provide flexibility in how students
approach their learning.

Data-Driven Insights: Personalized programs rely on data to monitor student progress and
engagement. Data collected from quizzes, assignments, and interaction patterns helps
educators and adaptive learning platforms adjust the program, ensuring that each student
remains on a path suited to their learning level.

Teacher Support and Mentorship: Teachers play a vital role in guiding and mentoring
students. In personalized programs, teachers often serve more as facilitators, offering targeted
support, encouragement, and resources rather than dictating every step of the learning process.

Benefits of Personalized Educational Programs
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1. Improved Engagement: Students are more likely to stay engaged when learning aligns with
their interests, strengths, and preferred learning styles. Personalized educational programs
make learning more relevant, helping students find purpose and joy in their studies.

2. Greater Academic Achievement: By focusing on individual needs and learning styles,
personalized programs enable deeper understanding and retention of knowledge. Studies have
shown that students in personalized settings often achieve better academic outcomes
compared to those in traditional models.

3. Increased Motivation and Confidence: Setting personal goals and achieving them can boost
students' confidence and motivation. When students see that their unique needs are being met,
they feel more supported and are more likely to take initiative in their learning journey.

4. Enhanced Skills for Future Success: Personalized programs encourage self-directed learning,
problem-solving, and time management—skills that are valuable in higher education and the
workforce. Students also develop resilience and adaptability as they work through challenges
at their own pace.

5. Reduced Learning Gaps: Personalized learning enables educators to address learning gaps as
soon as they appear. Rather than advancing all students at the same rate, educators can ensure
that each student has a solid foundation before moving on to more complex material.

6. Opportunities for Exploration: Personalized programs often provide students with the
flexibility to explore topics of personal interest. This freedom promotes curiosity and allows
students to develop specialized knowledge in areas they are passionate about.

Personalized educational programs have been implemented across various educational
institutions and levels. These programs can vary widely depending on available resources,
technological infrastructure, and pedagogical goals:

1. Primary and Secondary Schools: In settings, personalized learning is often implemented
through adaptive software, blended learning models, and differentiated instruction strategies.
Teachers may use platforms that track students' progress and provide recommendations for
personalized content.

2. Higher Education: Many universities are incorporating personalized programs to
accommodate diverse student populations. Competency-based courses, self-paced online
modules, and individualized mentorship allow students to tailor their learning experiences to
their academic and career goals.

3. Special Education: Personalized educational programs have significant benefits for students
with special needs. Individualized support and customized resources help ensure these
students receive the attention they need to succeed in the mainstream classroom.

4. Corporate Training and Professional Development: In the corporate world, personalized
learning programs help employees develop specific skills needed for their roles. These
programs often incorporate microlearning modules, interactive simulations, and on-the-job
training to provide relevant and customized learning experiences.

While the benefits of personalized education are substantial, there are also challenges and
considerations that institutions must address for successful implementation:

1. Resource and Technology Requirements: Developing a personalized program requires access
to adaptive technology, digital content, and data analytics tools. Schools and institutions with
limited funding may struggle to implement such programs effectively.

2. Teacher Training and Support: Educators must be adequately trained to use personalized
learning tools and interpret data insights. Teachers may also need to adapt to new roles as
facilitators, providing guidance and support rather than delivering traditional lectures.

3. Equity and Access: Personalized education requires equitable access to technology and
resources. Institutions must ensure that all students, regardless of socio-economic
background, have the tools they need to engage with personalized learning.

4. Privacy and Data Security: Data collection is essential for personalized learning, but it also
raises privacy concerns. Schools and educational platforms must adhere to strict data privacy
standards to protect students’ information.
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5.

Balancing Personalization with Standardization: While personalization is important, it must
be balanced with standardized curricula and assessments to meet educational benchmarks and
ensure fairness across the student population.

Motivation and Self-Discipline: Personalized programs require students to take more
responsibility for their learning. However, not all students may have the intrinsic motivation
or self-discipline to thrive in a personalized environment, especially if they are accustomed to
traditional structures.

As technology and educational research continue to evolve, the future of personalized learning
looks promising. Advances in Al, machine learning, and data analytics will enable even greater
customization, creating highly responsive programs that can address each student's unique learning
profile. Key trends for the future include:

1.

Al-Driven Personalization: Al-powered systems can analyze vast amounts of data on student
performance and behavior to offer even more nuanced personalization. These systems can
anticipate learning gaps before they become problems, provide tailored interventions, and
help students achieve mastery more effectively.

Integration with Augmented and Virtual Reality: AR and VR offer immersive, interactive
learning experiences that can be tailored to individual needs. Personalized programs may
include virtual field trips, interactive science experiments, or historical reenactments, making
education more engaging and accessible.

Holistic Student Profiles: Future personalized programs may create comprehensive profiles
that include not only academic data but also social-emotional insights, learning preferences,
and career aspirations. This holistic approach can support the development of well-rounded
individuals equipped for future success.

Cross-Disciplinary Personalization: Personalized educational programs will likely become
more interdisciplinary, allowing students to apply concepts across subjects and build
connections between fields. For example, a student interested in environmental science could
explore personalized modules in biology, chemistry, and public policy.

Increased Collaboration and Peer Learning: While personalized programs focus on individual
learning, they can also incorporate collaborative elements. Students may work on group
projects with peers who have complementary strengths, fostering teamwork and
communication skills.

3. METHODOLOGIES THAT DRIVE PERSONALIZED EDUCATION FORWARD BY Al
Mechanisms of Personalized Education :

1.

Advanced Data Analytics: One of the cornerstones of personalized education is the use of data
analytics to create real-time insights. Every action a student takes on an educational
platform—from answering questions to watching videos—is recorded and analyzed. Machine
learning algorithms then identify patterns and tailor recommendations to each student. This
allows for immediate adjustments in difficulty, pacing, and content type, creating a truly
customized experience.

Student Profiling and Learning Styles: Personalized educational programs often consider each
student’s learning style. While some students learn best through visual means, others may
thrive with hands-on projects or auditory lessons. Advanced personalization systems create
unique learning profiles, taking into account learning styles, cognitive abilities, motivation
levels, and interests. This profile is then used to offer learning materials that align with each
student's preferred style, boosting both comprehension and retention.

Behavioral and Predictive Modeling: Modern platforms track student engagement levels,
attention spans, and even frustration points, making predictive modeling a powerful tool. If a
student consistently struggles with a certain type of problem or loses engagement after specific
intervals, the program can proactively introduce breaks, change teaching tactics, or provide
motivational prompts to keep them engaged. This predictive capacity helps prevent
disengagement and burnout, supporting students to stay on track.
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4. Goal-Setting and Reflection Tools: Effective personalized programs encourage students to set

personal goals and reflect on their progress. These platforms often include goal-setting
features that allow students to break down long-term objectives into manageable steps,
fostering a growth mindset and resilience. Reflection tools, such as digital journals or progress
dashboards, let students see how far they’ve come and adjust goals as they achieve new
milestones.

Methodologies that Drive Personalized Education Forward :

1.

Flipped Classroom Model: This approach reverses the traditional teaching structure, where
students learn new material at home and apply it in the classroom. For personalized education,
the flipped classroom can offer great benefits. At home, students engage with resources
tailored to their individual needs, such as video lessons, readings, or quizzes. In the classroom,
they then work on assignments, projects, and discussions that help deepen their understanding
with guidance from the teacher.

Project-Based Learning (PBL): In personalized educational programs, PBL enables students
to work on real-world problems that align with their interests. This methodology gives
students more control over their learning and allows for interdisciplinary exploration. For
instance, a project focused on renewable energy could cover science, math, and social studies,
making the learning experience more relevant and memorable.

Gamification and Interactive Learning: Gamified elements are increasingly popular in
personalized education. These include achievement badges, points, levels, and rewards that
make learning feel like a game. Interactive simulations and scenarios also allow students to
apply their knowledge in dynamic ways, reinforcing learning through practice.

Self-Paced Learning: Personalized programs often use self-paced modules that allow students
to progress through the curriculum as they achieve mastery. This differs from traditional
programs that move at a uniform pace. Self-paced learning is especially beneficial for students
with busy schedules or unique learning needs, enabling them to catch up or accelerate as
needed.

Advancements in Technology Supporting Personalized Education :

1.

Artificial Intelligence and Machine Learning: Al and machine learning are at the heart of
modern personalized learning systems. Al helps identify individual student needs, adapt
content in real time, and offer predictive insights that empower teachers to make data-driven
decisions. Machine learning algorithms, for example, can detect when a student might
struggle with a topic and provide supplemental resources or recommend intervention
strategies.

Natural Language Processing (NLP): NLP enables more intuitive interactions between
students and digital platforms. For instance, a student struggling with a math problem could
type a question into a virtual assistant powered by NLP, which can then offer explanations,
resources, or even step-by-step solutions. This technology also aids in language learning,
where real-time feedback on grammar, pronunciation, and vocabulary is essential.

Virtual Reality (VR) and Augmented Reality (AR): VR and AR make immersive, interactive
learning experiences possible. In personalized programs, students can take virtual field trips,
conduct simulated science experiments, or explore historical sites. This type of learning caters
especially well to visual and experiential learners, enhancing engagement and comprehension.
Blockchain for Credentialing and Transparency: Blockchain technology offers secure
credentialing and record-keeping, which can help students and institutions maintain accurate,
transparent learning records. Blockchain could enable students to carry a portable learning
record from one institution or job to another, documenting their specific skills and
competencies without relying on traditional transcripts.

Real-World Applications and Examples of Personalized Education :

1.

K-12 Education: Many K-12 schools are piloting personalized programs through partnerships
with edtech providers. Programs like i-Ready, DreamBox, and Khan Academy offer
customized math and reading pathways for elementary and secondary students. Teachers can
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then use the data from these platforms to create targeted interventions for students who are
struggling or provide enrichment for those ready for advanced material.

Higher Education: Universities are implementing competency-based programs where
students can progress at their own pace, a model that works well for adult learners or students
with varied backgrounds. For example, Western Governors University (WGU) uses a
competency-based model that allows students to advance upon mastering the material, not
just completing course hours. This method aligns well with personalized education principles
and helps working professionals earn degrees on flexible schedules.

Corporate Training: Personalized learning is valuable in corporate training, where companies
like LinkedIn Learning and Coursera for Business offer individualized learning paths to
employees. Employees can engage in self-paced courses tailored to their roles, industries, and
career aspirations. Companies benefit from employees who are better equipped for specific
tasks and professional growth.

Special Education Programs: Personalized learning has had a significant impact on special
education by offering tailored resources and individualized support. Tools like Learning Ally,
which provides audiobooks for students with dyslexia, or platforms that use text-to-speech,
have made education more accessible for students with disabilities. Personalization allows
these students to learn at their own pace and receive materials in formats that suit their learning
needs.

Benefits and Potential Outcomes :

1.

Enhanced Learning Outcomes: Studies show that personalized learning can lead to higher
academic performance, greater retention, and improved skill mastery. When learning is
tailored to their individual needs, students are more likely to grasp complex concepts and
retain information over time.

Development of Critical Life Skills: Personalized educational programs encourage self-
management, time management, and problem-solving skills. These abilities not only help
students succeed academically but also prepare them for success in the workforce, where
adaptability and independence are highly valued.

Greater Inclusivity: Personalized education models are especially beneficial for diverse
student populations. They provide access to tailored resources for students from varied
backgrounds, ensuring that each learner has the opportunity to succeed.

Support for Continuous Learning: Personalized programs can support lifelong learning by
providing learners with tools to continue their education beyond formal schooling. This is
particularly valuable in today’s fast-evolving job market, where continuous skill development
is essential.

Overcoming Challenges in Implementation :

1.

Equipping Educators: Teachers and instructors need thorough training to maximize the
benefits of personalized education tools. This training should cover data interpretation, use of
adaptive technology, and ways to balance individual attention with class-wide objectives.
Ethics and Data Privacy: Personalized education relies heavily on student data, raising ethical
concerns around privacy. Educational institutions and companies must comply with data
privacy laws like GDPR and FERPA, ensuring transparent data collection and secure storage.
Balancing Customization with Core Standards: While personalization is key, educators must
still ensure that students meet core learning standards and benchmarks. Customized programs
should be designed to maintain rigor while accommodating diverse learning needs.

Resource Allocation and Infrastructure: Implementing personalized programs requires a
substantial investment in technology, infrastructure, and support staff. Schools and
institutions, particularly in underfunded areas, may struggle to provide equitable access to
these resources.

The future of personalized education will likely include:
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e Global Access and Scalability: Advances in cloud technology and mobile learning platforms
could bring personalized education to a global audience, including remote or underserved
communities.

o Greater Integration of Al: Future developments in Al may enable even more precise
personalization, with systems capable of understanding students' emotional states, learning
fatigue, and levels of engagement.

« Expanding Learning Ecosystems: Personalized learning could expand beyond classrooms into
lifelong ecosystems where learning is woven into all aspects of life, from workplaces to
community spaces.

o Collaborative Personalization: Future personalized programs might incorporate collaborative
elements where students work in groups on customized projects, building interpersonal and
collaborative skills in addition to individual mastery.

4. CONCLUSION

Personalized educational programs are reshaping the future of education by prioritizing
individual learning needs and empowering students to take control of their education. These programs
offer numerous benefits, from improved academic outcomes and student motivation to the
development of crucial life skills. By addressing each learner’s unique profile, personalized programs
make learning more meaningful, equitable, and effective. As technology advances and educators
refine their approaches, personalized learning will continue to expand, creating transformative
opportunities for students worldwide. In conclusion, personalized educational programs are reshaping
the future of learning by putting the individual at the center of the educational journey. Through
innovative technologies like Al, machine learning, and data analytics, these programs are adapting to
diverse needs, abilities, and learning preferences, creating more inclusive and effective educational
environments. They encourage self-paced learning, critical thinking, and self-management skills, all
of which are essential in today’s fast-paced and ever-evolving world. While challenges such as ethical
concerns, resource disparities, and the need for educator training remain, the benefits of personalized
education are clear. When implemented thoughtfully, these programs not only enhance academic
outcomes but also equip students with skills crucial for success beyond the classroom. As the field
continues to advance, personalized education holds the promise of a future where every learner,
regardless of background or ability, has the opportunity to thrive in a truly customized and supportive
learning environment. This evolution signifies a shift from a one-size-fits-all model to one that values
and fosters individual growth, opening doors for a more equitable and empowered society. Beyond
academic settings, personalized learning has found valuable applications in corporate and
professional development, allowing individuals to stay competitive in the job market by continuously
upgrading their skills. In fields like healthcare, engineering, and finance, where ongoing education is
crucial, personalized learning pathways enable professionals to acquire specific knowledge and skills
relevant to their roles, which in turn supports organizational growth and innovation. Despite its
promise, personalized education faces challenges, including concerns over data privacy, the need for
equitable access to technology, and the preparation of educators to effectively leverage personalized
tools. Addressing these issues requires a multi-faceted approach, from policy reforms to investments
in infrastructure and teacher training. Schools and organizations must ensure that personalization
efforts protect student data, maintain rigorous standards, and provide universal access to high-quality
resources.

Looking to the future, the evolution of personalized education will likely be shaped by further
technological advancements and a growing emphasis on learner-centered approaches. As educators,
institutions, and governments recognize the long-term benefits of personalization, there will be
greater investment in creating scalable, secure, and inclusive solutions that make this approach
accessible to learners everywhere. In time, the principles of personalized education—flexibility,
inclusivity, and student empowerment—may redefine education across all levels, creating a more
adaptive, resilient, and knowledgeable society. Ultimately, personalized education is more than a
trend; it’s a transformative approach that aligns education with the complexities and opportunities of
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the modern world. By embracing this shift, we can foster a generation of learners who are not only
academically proficient but also equipped with the skills, confidence, and mindset needed to thrive
in an ever-changing global landscape.
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NEURAL NETWORK BASIS OF INNOVATION.

Abstract: The article is devoted to the analysis of the role of neural network technologies in the implementation
of innovations across various sectors of the economy and society. The potential of neural networks for process
automation, big data analysis, and trend forecasting is explored. The practical application of neural networks in industry,
education, science, and economics is highlighted, including forecasting technical failures, optimizing production
processes, personalizing education, and fostering innovative economies. Special attention is given to the prospects of
neural network integration within the frameworks of Industry 4.0 and Industry 5.0 concepts, focusing on human-centered
approaches and sustainable development. The article also emphasizes the need to establish integrated research,
educational, and industrial centers, intersectoral platforms, and innovative educational programs to create synergy
between education, science, and economics. Proposed models of neural network use aim to adapt the economy to limited
resource conditions and develop financial mechanisms to support innovation.
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1. Introduction

Neural network technologies are among the most promising tools for implementing
innovations across various economic sectors in today's world. Their potential is immense, as they can
radically transform approaches to solving strategic tasks, providing a new level of efficiency,
precision, and adaptability. These technologies are now becoming the foundation for automation, data
analysis, and trend forecasting, which is crucial for many economic sectors, especially amid rapid
transformation.

One of the key areas of neural network application is predicting technical failures in complex
equipment. For example, in metallurgical complexes, heavy machinery plants, or high-precision
equipment, failures can cause significant losses. Neural networks enable effective real-time
monitoring of equipment parameters. Convolutional neural networks analyze sensor data, such as
vibrations, temperature, or pressure, identifying even the slightest deviations. Recurrent neural
networks, particularly LSTMs, recognize patterns that may precede failures, allowing for
maintenance planning to minimize risks and costs. In industries such as aviation, these systems can
detect potential engine problems before they occur, ensuring uninterrupted operations and substantial
resource savings.

Another critical aspect is the automation of production lines. In complex multi-stage
processes, such as electronics or automotive manufacturing, neural networks allow for real-time
optimization of technological parameters, adapting them to changing conditions. They not only
maintain a consistent level of product quality but also learn during operation. For instance,
reinforcement learning methods enable production systems to self-adapt to equipment wear or
changes in raw material properties. Additionally, the use of convolutional neural networks for image
analysis facilitates automated quality control by detecting even the smallest defects in products.

The role of neural networks extends beyond production processes. In marketing and supply
chain management, these technologies provide tools for analyzing large datasets from sources such
as online sales or social media. This enables forecasting consumer behavior, optimizing inventory,
and even creating personalized offers. For example, transformers like GPT and BERT help create
interactive customer experiences, increasing loyalty and boosting sales. For industrial enterprises,
this translates into the ability to quickly adapt production lines to new market demands, which is
particularly important in today's dynamic market environment.

The restoration of Ukraine's industrial, educational, and scientific potential can also be based
on neural networks. In industry, they enable the modernization of outdated equipment, the
implementation of digital twins of technologies, and increased productivity. In education, the
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development of adaptive learning platforms will facilitate the preparation of specialists for high-tech
industries. In science, the integration of big data into research processes will accelerate fundamental
discoveries.

2. Conceptual Foundations of Neural Network Innovations

Thanks to their ability to analyze large volumes of data, uncover hidden patterns, and make
optimal decisions swiftly, neural networks are increasingly becoming indispensable tools in modern
industries. The manufacturing sector, which frequently faces challenges such as equipment failures
or the need to optimize processes, particularly benefits from neural networks. For instance, models
based on recurrent neural networks (LSTM) can predict technical failures, minimizing downtime
risks. Neural networks also enable real-time analysis of sensor data, detecting anomalies and
suggesting corrective actions. This reduces costs and improves equipment reliability, which is
critically important for enterprises focused on high productivity.

The use of robotic systems driven by deep learning algorithms accelerates research and
ensures accurate results. This is particularly relevant for tasks such as discovering new materials,
where machine learning combined with high-precision experimental setups significantly reduces the
time and resources required to achieve scientific breakthroughs.

The educational sector is also actively implementing neural network technologies. Adaptive
learning systems based on transformers, such as GPT and BERT, create personalized programs for
students, taking into account their needs and individual learning styles. This enhances the efficiency
of the learning process and improves outcomes. These systems not only help students master complex
technologies but also prepare them for the realities of Industry 4.0 and 5.0 [1,2]

Moving to the concept of Industry 5.0, it should be noted that it emphasizes a human-centric
approach. In this context, neural networks serve as instruments for harmonizing the interaction
between humans and machines. They provide operators with decision-making support, enable
personalized solutions based on individual needs, and even adapt to new conditions. For example, in
manufacturing, this can manifest in the development of intelligent energy management systems that
reduce costs and ensure environmental sustainability.

Of particular interest is the interplay between science, education, manufacturing, and the
economy. The synergy of these domains forms the foundation of innovative development. The results
of scientific research are integrated into manufacturing processes through the preparation of qualified
personnel, while education programs based on Al help future professionals master the latest
technologies. The creation of educational and research platforms, such as digital simulations or virtual
laboratories, ensures that students and researchers have access to advanced technologies without
significant costs.

3. Application of Neural Networks in the Short-Term Perspective

In the short term, neural networks can significantly transform approaches to construction,
resource extraction, metallurgy, mechanical engineering, education, and economics. Their application
ensures automation, efficiency, and predictability, which are particularly crucial under conditions of
limited resources and high productivity demands.

In construction, neural network technologies provide new opportunities for automating
planning and monitoring processes. They dynamically generate project schedules, considering
numerous factors such as weather conditions, material availability, or human resources. Neural
networks analyze data from drones or surveillance cameras, enabling real-time detection of delays or
defects. Special attention is drawn to digital twins that model the behavior of structures, such as
bridges or buildings, under various loads, ensuring predictive maintenance and emergency scenario
simulations. For instance, a digital twin of a residential complex allows optimization of energy
consumption and enhances the comfort of its residents.

In resource extraction, neural networks facilitate intelligent analysis of geological data,
identifying new deposits of valuable minerals even in hard-to-reach regions. They also assess the
economic feasibility of extraction under resource scarcity. Using predictive models, neural networks
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optimize the operation of drilling rigs, reducing energy consumption, and predict potential equipment
failures to avoid downtime. For example, in gas extraction, neural networks can automatically adjust
drilling parameters based on the rock type, minimizing the risk of accidents.

Metallurgy and mechanical engineering also benefit from the implementation of neural
networks. In metallurgy, they optimize temperature regimes in smelting furnaces, enhancing metal
quality, and reducing heat losses, thereby ensuring efficient energy consumption. In mechanical
engineering, neural networks streamline the automation of design and manufacturing processes. Al-
driven generative design proposes optimal structures for components with minimal weight and high
strength. Furthermore, neural networks enable precise machining of components, reducing the risk of
defects. For instance, in turbine production, neural networks assist in creating optimal blade shapes
and ensuring their manufacturing accuracy.

In education, the potential of neural networks allows for the development of personalized
learning paths tailored to each student's level of knowledge and needs. Intelligent assessment systems
automatically evaluate assignments, analyze errors, and offer recommendations. Adaptive Al-based
platforms enable rapid training of specialists in the field of neural networks, utilizing virtual
simulators and online courses that adjust to the students' level. This approach is particularly effective
for hands-on learning through practical projects that work with real data.

The economy, under resource-constrained conditions, also gains significantly from neural
network implementation. They optimize resource allocation by identifying the most efficient budget
utilization directions and developing optimal delivery routes considering weather conditions or road
status. By analyzing expenses, neural networks can identify weak points and optimize processes. For
small businesses, this becomes an opportunity to achieve competitiveness even with limited financial
resources.

4. Long-Term Development Prospects

The long-term development prospects of neural network technologies pertain to the
integration between humans and machines, acceleration of scientific research, sustainable production,
innovative education, and the management of complex systems. These directions are already forming
the foundation for Industry 5.0, which emphasizes a human-centered approach and sustainable
development [3-5]. Neural network technologies enable adaptive interfaces capable of intuitively
recognizing operator commands while considering their emotional state or physical limitations. For
instance, robotic systems equipped with deep learning not only perform tasks but also act as partners
for workers, collaboratively solving production challenges. Intelligent exoskeletons provide safety
and comfort, while cognitive interaction between humans and robots facilitates the analysis of
workers’ requests and the provision of immediate solutions.

The scientific domain is also one of the primary beneficiaries of neural network system
advancements. These technologies accelerate the modeling of complex physical and chemical
processes, replacing traditional mathematical models that previously required years of research. For
example, NLP models automate the analysis of scientific publications, highlighting key trends and
discoveries. Such systems not only generate new hypotheses but also optimize experimental
parameters in real-time, driving breakthroughs in science.

Sustainability and ecology also benefit from the implementation of neural networks. They
enable resource optimization by forecasting energy consumption and identifying efficient delivery
routes, minimizing transportation costs and emissions. Neural network-based modeling of closed
production cycles contributes to waste reduction and the reuse of materials. For instance, in the
chemical industry, leftover materials are converted into secondary raw materials, significantly
reducing the environmental impact of production.

Digital twins integrated with neural networks open new opportunities in managing complex
systems. They continuously analyze data from physical systems, predict potential failures, and
develop preventive strategies. Such systems can be used to model intersectoral collaboration, for
example, in projects involving universities, factories, and businesses. Intelligent twins develop long-
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term development strategies by modeling economic, technological, and educational scenarios,
ensuring synergy between these fields.

5. Integration and Implementation

The integration and implementation of neural network technologies require the creation of
effective mechanisms that unify education, science, and industry, while also adapting the economy
to the constraints of limited resources. Establishing integrated research centers that combine
education, scientific research, and industrial needs is a top priority. Such centers should facilitate
workforce retraining, the development of innovative solutions, and the rapid transfer of technologies.
For example, "Neural Network Innovation Centers" established at universities could offer practical
training programs for students and address real-world industrial challenges. This approach would not
only create an effective learning environment but also integrate education into industrial processes.

Intersectoral platforms play a vital role in fostering collaboration between various sectors of
the economy. These platforms enable the exchange of data and expertise among engineers,
researchers, and entrepreneurs, develop standards for implementing Al in industries and
transportation, and accelerate startup development. Young teams gain access to real production data,
allowing them to test their ideas in conditions as close to practical applications as possible. Such hubs
can integrate into global innovation networks, promoting regional initiatives.

Government support for startups is crucial for innovation development. Flexible grant
programs should include funding for prototyping, access to equipment through technology parks, and
mentorship support. Combining public funding with private investments via incentive programs will
encourage businesses to collaborate with young development teams. This will form the foundation
for creating competitive technological solutions.

Adapting the economy to the conditions of limited resources is a significant challenge that can
be addressed through neural networks. These technologies optimize production cycles, enabling the
prediction of energy consumption and effective inventory management. For instance, in metallurgy,
neural networks help adjust furnace temperature regimes to minimize energy consumption and predict
material needs to ensure their efficient use.

The creation of sustainable financial models to support innovation involves using neural
networks for financial flow modeling, risk analysis, and cost optimization. This will allow for more
effective allocation of resources between research, implementation, and scaling. Flexible approaches
to lending, including government and private programs, will ensure funding access for companies
developing cutting-edge technologies.

6. Conclusions

The innovative development of Ukraine is based on the harmonious interaction of education,
science, and the economy. These three components form the foundation for sustainable growth and
modernization. To ensure this development, it is essential to identify key areas that will enable the
creation of an effective innovation ecosystem.

Education should focus on preparing future professionals. This involves the introduction of
interdisciplinary programs that combine knowledge in neural networks, robotics, data analysis, and
environmental sustainability. Educational institutions must adapt their curricula to meet the demands
of the modern labor market, ensuring the deep integration of technologies into the learning process.

Science should shift its focus to solving applied problems, such as forecasting infrastructure
conditions, developing new materials, or automating industrial processes. This will enable rapid
responses to current challenges and support economic transformation through innovative solutions.

The economy, by integrating new technologies, should become more resilient to global
challenges. The transition to a digital economy, optimization of production processes, and
implementation of automation are key steps that will enhance international competitiveness.

Neural network technologies play a unifying role in this system. In education, they ensure
personalized learning by adapting materials to students' levels. In science, they facilitate the
automation of large-scale data analysis and the creation of simulations to predict the development
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scenarios of complex systems. In the economy, they optimize resource use, forecast market trends,
and support the adaptation of business strategies.

Further Research

Future development requires the creation of innovative models for interaction among
education, science, and industry. Platforms for joint projects must be introduced to provide effective
coordination among students, researchers, and industrial companies. For instance, virtual laboratories
can unite participants to solve applied problems in real time. The use of digital twins for simulating
production processes will also become a powerful tool for learning and research.

Innovative educational programs should integrate Al technologies into curricula, enabling
learners to acquire practical skills in working with neural networks. The development of dual
education programs that combine theory and practice in industrial settings will prepare specialists
capable of promptly addressing applied tasks.

Regional scientific and industrial clusters will facilitate the implementation of joint projects
between universities, research institutes, and enterprises. This will enable the integration of
innovations into industry and the development of a competitive economy.

Comprehensive Approaches to Technology Development

Further technological development requires a systematic approach that considers
interdisciplinarity, flexibility, and scalability. Incorporating methods from various fields such as
mathematics, computer science, biology, and chemistry will enable the creation of new solutions for
pressing challenges. Flexibility in research will ensure rapid adaptation to new challenges through
experimental models. Scalability will allow technologies to transition from local to global
applications.

For example, using neural networks in biotechnology can accelerate the development of new
drugs or materials. Automated forecasting systems will ensure the resilience of industrial systems to
crises, supporting their effective operation even under challenging conditions.

Thus, neural network technologies integrated into education, science, and the economy ensure
Ukraine's sustainable development. They establish a foundation for an innovative ecosystem that
combines intellectual resources, modern technologies, and efficient financial mechanisms. This
approach will enable Ukraine to confidently advance toward global technological leadership.

References

1. Kusma V.V., Geronimo B.M., Zola F.C., Aragdo F.V., Chiroli D.M.D.G., Kovaleski J.L., ‘A maturity model of
occupational safety and health in industry 4.0: An analysis in Brazilian organizations’, Journal of Safety and
Sustainability, 2024, ISSN 2949-9267. Available at: https://doi.org/10.1016/j.jsasus.2024.11.002.

2. Kans M., Campos J., ‘Digital capabilities driving industry 4.0 and 5.0 transformation: Insights from an interview
study in the maintenance domain’, Journal of Open Innovation: Technology, Market, and Complexity, vol. 10,
no. 4, 2024, art. no. 100384, ISSN 2199-8531. Available at: https://doi.org/10.1016/j.joitmc.2024.100384.

3. Nikiforidis K., Kyrtsoglou A., Vafeiadis T., Kotsiopoulos T., Nizamis A., loannidis D., Votis K., Tzovaras D.,
Sarigiannidis P., ‘Enhancing transparency and trust in AI-powered manufacturing: A survey of explainable Al
(XAI) applications in smart manufacturing in the era of industry 4.0/5.0°, ICT Express, 2024, ISSN 2405-9595.
Available at: https://doi.org/10.1016/j.icte.2024.12.001.

4. Adel A., Alani N.H.S., Jan T., ‘Factories of the future in industry 5.0—Softwarization, Servitization, and
Industrialization’, Internet of Things, vol. 28, 2024, art. no. 101431, ISSN 2542-6605. Available at:
https://doi.org/10.1016/j.i0t.2024.101431.

5. Liu S, Li P., Wang J., Liu P., ‘Toward industry 5.0: Challenges and enablers of intelligent manufacturing
technology implementation under the perspective of sustainability’, Heliyon, vol. 10, no. 15, 2024, art. no.
€35162, ISSN 2405-8440. Available at: https://doi.org/10.1016/j.heliyon.2024.e35162.

50


https://doi.org/10.1016/j.jsasus.2024.11.002
https://doi.org/10.1016/j.joitmc.2024.100384
https://doi.org/10.1016/j.icte.2024.12.001
https://doi.org/10.1016/j.iot.2024.101431
https://doi.org/10.1016/j.heliyon.2024.e35162

UDC 004.8:616.07-073.7
Vitaliy Yakovyna, Danylo Melnyk (Lviv Polytechnic National University, Lviv Ukraine)

AN INTERPRETABLE SYSTEM FOR BREAST CANCER DIAGNOSIS USING XAI
METHODS

Abstract: Breast cancer remains a leading cause of death among women worldwide, requiring early and
accurate detection methods. This study aims to improve the interpretability of breast cancer diagnostic systems by
integrating Explainable Al (XAl) techniques without compromising prediction accuracy. Utilizing the publicly available
InBreast dataset, we employed pretrained EfficientNet and GMIC models finetuned on mammographic images.
Integration of XAl methods provided visual explanations of model decisions, enhancing interpretability crucial for
clinical practice. The finetuned GMIC model, enhanced with improved regions of interest (ROIs) grouping and filtering
methods, achieved an AUC-ROC of 0.857 and a Dice Coefficient of 95.3%, demonstrating high classification and
localization accuracy.

Keywords: Breast Cancer Diagnosis, Interpretability, Explainable Al, Computer Vision, Deep Learning,
Convolutional Neural Networks.

Breast cancer is one of the leading causes of death among women in the USA. Globally, in
2022 alone, 2.3 million patients were diagnosed with breast cancer, with more than 670,000 resulting
deaths [1].

One of the primary methods for diagnosing breast cancer is screening mammography.
Mammography is a type of X-ray imaging technique that allows radiologists to visualize internal
breast structures. Radiologists analyze screening mammograms for tissue abnormalities that may
indicate breast cancer. However, according to research [2], the average radiologist achieves a
specificity of only 85.2% with a sensitivity of 62.1% in recognizing malignant cases. This
performance requires further confirmation of mammography diagnosis through additional methods,
such as ultrasound or tomosynthesis. In some cases (10-20% of women with suspicious
mammograms), patients are referred for invasive procedures such as ultrasound-guided biopsies, but
only 20-40% of these biopsies confirm malignancy [3].

Early and accurate diagnosis is key to improving the quality of life and survival rates of
patients. This brings the need for automated, precise, and interpretable diagnostic tools. Despite
significant advances in medical technology, Al-based diagnostic methods have not been widely
adopted in clinical practice. One of the primary reasons for this low adoption rate is the lack of
transparency in Al-based models. In the healthcare domain, interpretability is especially crucial —
diagnostic decisions must be explainable to both patients and professionals to build trust and ensure
appropriate medical intervention.

The development of automated, accurate, and interpretable diagnostic tools could lead to
greater adoption and integration into clinical workflows, ultimately improving diagnostic reliability
and patient outcomes.

Breast cancer diagnosis using mammographic images has a significant focus from computer
vision researchers. Automated diagnostic systems are vital for early detection, which improves the
chances of successful treatment [4]. EXxisting systems often struggle with poor interpretability of
results.

Many studies have aimed to improve classification accuracy using various deep learning
techniques and architectures. For example, [5] proposed a system that classifies mammographic
images into benign and malignant categories using a YOLO-based model. The researchers utilized
the CBIS-DDSM dataset and a private dataset of spot magnification mammograms for training and
evaluation. Preprocessing steps were applied to enhance the contrast between calcifications and other
tissues, improving the model's ability to detect subtle anomalies.
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Similarly, [6] explored classifiers based on pre-trained deep convolutional neural networks
such as AlexNet, GoogleNet, and ResNet. They investigated various approaches, including using
DCNNSs as feature extractors for support vector machine classifiers and the impact of applying
principal component analysis to the extracted features. Their method involved cropping regions of
interest from images and applying histogram equalization (CLAHE) to improve image quality. The
study demonstrated that combining deep learning with traditional machine learning techniques could
enhance classification performance on datasets like CBIS-DDSM and MIAS.

In another approach, [7] EfficientNet models were used for classification based on the BI-
RADS system with eight categories instead of the common binary classification approach. This
method aimed to provide a more detailed assessment aligned with clinical practices, using a private
dataset for training and evaluation. However, the use of a private dataset limits the reproducibility
and comparison with other studies.

Addressing the issue of interpretability, [2, 8] developed an interpretable classifier for high-
resolution breast cancer screening images utilizing weakly supervised localization. The system
employed multiple convolutional neural networks, starting with a model to identify suspicious
regions, followed by patch classification using models like ResNet-34 or ResNet-50. They formulated
the task as a multi-label classification problem for the presence of benign and malignant lesions,
allowing for the generation of separate saliency maps for visualization. These saliency maps highlight
regions of interest, helping clinicians understand the model's decision-making process.

Several limitations of the clinical applicability of existing studies were determined:

e Use of Private Datasets. Many of studies utilized private datasets, making it
challenging to reproduce results or compare the proposed methods. The lack of
publicly available data makes the validation of these models nearly impossible
stopping their wider adoption.

¢ Insufficient Models Interpretability. While some models achieve high accuracy,
they often do not provide clear explanations of their decisions. This lack of
transparency makes it difficult for clinicians to trust and effectively use these
systems.

e Insufficient Validation of Interpretability. Most studies focus primarily on
classification accuracy, ignoring the need for explainability or without the
quantitative assessment of interpretability.

These unresolved issues highlight the need for diagnostic models that balance high accuracy
with transparency.

Many existing Al models for breast cancer diagnosis function as «black boxesy, offering
accurate results but little or no insight into how they reach their conclusions. There is limited
integration of Explainable Al (XAI) techniques into breast cancer detection models, suggesting
opportunities to improve interpretability. Balancing model accuracy with explainability remains a
significant challenge. Finding an optimal balance where the model remains accurate while providing
understandable explanations is crucial.

The aim of the work is to improve the interpretability of automated breast cancer diagnostic
systems by integrating Explainable Al (XAI) techniques without compromising the accuracy of
predictions.

To achieve this aim, we will analyze existing approaches and datasets, implement
preprocessing methods, develop a system to evaluate interpretability, create an interpretable model,
optimize hyperparameters, and validate the proposed approach.

As the main dataset for further research, we selected the public InBreast dataset due to its
high-resolution digital mammographic images with detailed annotations. The dataset contains 410
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images from 115 cases, including various types of lesions such as masses, calcifications, asymmetries,
and architectural distortions. Precise contours of anomalies are provided, manually annotated by
radiologists in XML format. The availability and quality of InBreast make it suitable for developing
and validating our interpretable diagnostic system.

We utilized convolutional neural networks (CNNSs) for the classification of mammographic
images. CNNs are effective for image analysis tasks because they can automatically learn hierarchical
feature representations. Specifically, we employed pre-trained EfficientNet models [11], known for
their balance of accuracy and computational efficiency.

We assessed model performance in terms of both classification and localization quality.

Classification Metrics used for each class:

Precision measures the proportion of correct positive predictions:

. Tk
Precision, = m

Recall measures the proportion of actual positives correctly identified:
TP,
TP, + FN,
where TP, is the number of correct predictions of class ¢, FP, is instances incorrectly predicted as
class ¢, and F N, is the number of instances of class ¢ incorrectly predicted as another class.
We then computed the macro-average over all classes to obtain overall Precision and Recall:

Recall, =

1
Precision = §Z Precision,,

Cc

1
Recall = §Z Recall,,
Cc

where ¢ € {Malignant; Benign; Normal}.

Area Under ROC Curve (AUC-ROC) evaluates the model's ability to distinguish between
classes across all threshold settings. For per-class AUC-ROC, we used the one-vs-rest method. To
aggregate AUC-ROC, we computed:

AUCroc,agg = JAUCroc,Benign ' AUCroc,Malignant:

where AUC;oc penign 1S the area under the ROC curve for Benign vs. Rest, and AUC;oc matignant 1S
ROC AUC of Malignant vs. Rest.

Used Localization Metrics:

Dice Coefficient measures the overlap between the predicted regions and ground truth in
terms of pixels:

2-TP
2-TP+FP+FN
Precision and Recall for Localization show how many Regions of Interest (ROIs) are
precisely detected (Precision) and the proportion of actual ROIs correctly identified (Recall) ignoring
their areas. A predicted ROI is considered correct if it intersects with annotated anomalies.

Dice =

We finetuned EfficientNet-B4 and EfficientNet-B5 models on the InBreast dataset. We
experimented with full and partial parameter tuning (training only the final layers while keeping
earlier layers frozen). To address class imbalance we applied a weighted sampler, augmenting
underrepresented classes in training set.

53



Table 1. Results of EfficientNet classifiers.

Experiment | Architecture Trained Parameters | Balance Train AU(.:—ROC—AGG
No Train Test
18 EffNet B4 All, 17TM — 0,996 0,834
19 EffNet B4 Freeze, 14M — 0,999 0,817
21 EffNet B4 All, 17M + 1,000 0,842
22 EffNet B4 Freeze, 14M + 0,955 0,805
25 EffNet B5 Freeze, 22M — 0,965 0,785
26 EffNet B5 Freeze, 22M + 0,946 0,795

The best classification results were achieved with the EfficientNet-B4 model when all layers
were trained and the training set was balanced (Experiment Ne21): AUC-ROC: 0.842, Accuracy:
73.2%, Precision: 70.9% and Recall: 65.1%.

The model demonstrated better performance in recognizing malignant cases compared to
benign ones (Fig. 1). The most common errors were 14 normal images predicted as benign and 13
malignant images predicted as benign.

Val Confusion Matrix

- 25(62.50%) 13 (32.50%) 2 (5.00%) - 70

MALIGNANT

- 60

True
BENIGN

3 (3.09%) 82 (84.54%) 12 (12.37%) - 40

0 (0.00%) 14 (51.85%) 13 (48.15%)

NORMAL

' ' ' -0
MALIGNANT BENIGN NORMAL
Predicted

Figure 1. Confusion matrix of EfficientNet B4 classifier trained all params with a balanced
train set.

We also compared the achieved results with the GMIC model [8] (Table 2).
Table 2. Results of GMIC classifiers.

Experiment Architecture Trained Balance Train AU(.:—ROC—AGG
No Parameters Train Test
31 GMIC No finetuning - - 0,502
32 GMIC Finetune last - 0,872 0,853

linear layer, 1K

33 GMIC Finetune last ¥ 0,815 0,857
linear layer, 1K

The GMIC model, after finetuning the last linear layer with a balanced train subset
(Experiment #33), showed the highest ROC-AUC: 0.857. However, it showed relatively low accuracy
after thresholding: ACC: 48.2%. Adjusting threshold values improved classification metrics.
Optimizing thresholds to 0.3 for the benign class and 0.5 for the malignant class increased overall
accuracy by approximately 17%: ACC: 65.5%, Precision: 58.2%, and Recall: 62.8%. Confusion
matrixes before and after thresholds tuning are shown in Fig. 2.
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Val Confusion Matrix Confusion Matrix - test

3 (7.50%) 6 (15.00%) 4(10.00%) 5 (12.50%)

MALIGNANT
L
MALIGNANT

= 15(15.46%) 25(25.77%) 15 (15.46%) 60 (61.86%) 22 (22.68%)

True
BENIGN

AL
BENIGN

21(7.41%) 2(7.41%) 23 (85.19%) 2(7.41%) 12 (44.44%) 13 (48.15%)

NORMAL
NORMAL

' ! l ] | )
MALIGNANT BENIGN NORMAL MALIGNANT BENIGN NORMAL
Predicted Predicted

A) B)
Figure 2. Confusion matrix of finetuned GMIC classifier trained with balanced train set.
A) Before threshold tuning; B) After threshold tuning.

To enhance the interpretability of the developed classifiers, we integrated Explainable Al
(XAI) methods, focusing on:

e Activation Maps. These methods visualize the activation levels of different regions
by analyzing neuron activations in intermediate network layers, indicating areas of
high importance.

e Class Activation Mapping (CAM). A technique that identifies the impact of different
image regions on the prediction of a specific class. CAM focuses on areas that most
contribute to classifying an image into a particular category.

e Grad-CAM [12] and Variants. Gradient-weighted Class Activation Mapping (Grad-
CAM) and its extensions Grad-CAM++ and HiResCAM were used to generate
saliency maps highlighting important regions influencing the model's predictions.

For the EfficientNet classifiers, we used Activation Maps, Grad-CAM, and its variants to
generate saliency maps that highlight important regions influencing the model's predictions.

For the GMIC model, we implemented the approach proposed by the authors [8] and
developed our own improved method. In the improved method, we applied additional grouping and
filtering of predicted regions. Regions close to each other were grouped and approximated with
bounding rectangles. Filtering based on confidence scores allowed us to discard insignificant regions.

Explainable Al methods do not always correctly differentiate the severity of anomalies.
Therefore, all localization metrics focused solely on the ability to distinguish anomalies from normal
regions, ignoring severity levels.

Table 3. Localization metrics on the test set.

Training B Explainability Patch D_etection Segmeptation
Experiment No Classifier Approach M_etrlcs, % Metr_lc, %

Precision | Recall Dice
21 EfficientNet B4 | Attention maps 75,0 37,8 8,7
21 EfficientNet B4 GradCAM 75,0 37,8 8,7
21 EfficientNet B4 | GradCAM++ 75,0 37,8 8,7
21 EfficientNet B4 HiResCAM 75,0 37,8 8,7
31 GMIC GMIC 28,7 35,1 92,9
31 GMIC GMIC with 515 | 265 94,9

grouping and
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filtration
33 Finetuned GMIC GMIC 41,1 46,2 93,2
GMIC with
33 Finetuned GMIC | grouping and 65,5 37,3 95,3
filtration.

The best localization performance was achieved by the fine-tuned GMIC model with grouping
and filtering of anomalous regions (Experiment Ne33). The patch detection reached a Precision of
65.5% and Recall of 37.3%, with a Dice Coefficient of 95.3%. Let's explore localization results on
several examples (Fig. 3):

Original Image

(A), (B), (D): Significant differences between the shape of the detected anomaly and
the annotated ground truth due to approximating aggregated predictions with simple
rectangles.

(C): A cluster of calcifications was successfully detected and approximated with
several rectangles, but some distant calcifications were missed.

(E), (F): Instances of falsely predicted regions, highlighting the need for better
filtering mechanisms.

Image ID: 22427751 | View: L-MLO Image ID: 22580419 | View: L-MLO
BI-RADS: 5 | ACR Density: 2 BI-RADS: 2 | ACR Density: 3

y:
True label: MALIGNANT | Predicted label: MALIGNANT True label: BENIGN | Predicted label: MALIGNANT

Predicted Masks True Masks Original Image Predicted Masks True Masks

A) B)

Image ID: 22579870 | View: L-CC Image ID: 22678856 | View: L-MLO
BI-RADS: 4c¢ | ACR Density: 3 BI-RADS: 2 | ACR Densit;

y: 3
True label: MALIGNANT | Predicted label: MALIGNANT True label: BENIGN | Predicted label: BENIGN

Predicted Masks True Masks Predicted Masks True Masks

C) D)
Figure 3. Examples of detection results.
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Image 1D: 51070197 | View: R-CC Image ID: 53587744 | View: L-CC
BI-RADS: 2 | ACR Density: 2 BI-RADS: 1 | ACR Density: 1
True label: BENIGN | Predicted label: MALIGNANT True label: NORMAL | Predicted label: BENIGN

Original Image Predicted Masks True Masks Predicted Masks True Masks

E) F)
Figure 3 (continue). Examples of detection results.

CONCLUSIONS

Our study demonstrates that integrating Explainable Al (XAI) techniques into a convolutional
neural network (CNN) models significantly enhances the interpretability of automated breast cancer
diagnostic systems using mammographic images. By employing the publicly available InBreast
dataset, we developed and fine-tuned models that not only achieve high classification accuracy but
also provide visual explanations of their decisions, addressing a critical need in clinical practice.

The fine-tuned GMIC model, combined with our improved method of grouping and filtering
predicted regions, achieved the best performance in both classification and localization tasks.
Specifically, the model reached an AUC-ROC of 0.857 and a Dice Coefficient of 95.3%. The
localization precision and recall were 65.5% and 37.3%, respectively. These results indicate that the
model is effective in accurately identifying malignant cases and highlighting the regions of interest
that influenced its decisions.

However, challenges remain in fully aligning the detected anomaly shapes with ground truth
annotations. Discrepancies often arise due to approximating complex lesion shapes with simple
geometric figures like rectangles. Additionally, some distant or subtle anomalies may be missed, and
instances of false positives highlight the need for further refinement.

To further enhance the system's clinical applicability, future research should focus on:

Refining Anomaly Shape Approximation: Developing more sophisticated methods to
approximate the shapes of anomalies can improve the overlap between detected regions and ground
truth, leading to better interpretability and trustworthiness.

Optimizing Threshold Values: Fine-tuning the threshold settings for region filtering can help
balance sensitivity and specificity, reducing false positives and negatives.

Enhancing Post-processing Techniques: Implementing advanced image processing methods
may improve the quality of localized regions, capturing subtle anomalies that are currently missed
and eliminating insignificant regions.

Validating with Larger and Diverse Datasets: Testing the models on larger and more diverse
datasets can help generalize the findings and ensure the models perform well across different
populations and imaging conditions.

By addressing these areas, we aim to develop a more robust and interpretable diagnostic tool
that can be confidently integrated into clinical workflows. This advancement has the potential to
improve diagnostic reliability, facilitate early detection of breast cancer, and ultimately enhance
patient outcomes.
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YK 004.9
Adonin 1. (Kuiscoxuu nayionanvnuii ynisepcumem imeni Tapaca lllesuenka, Kuis, Ykpaina)

MOJIEJIIOBAHHS MOMUPEHHSA IHOOPMAIIIL B COLIAJIBHUX MEPEKAX 3
ATEHTAMUA

Anomauin. YV oaniii nybnixayii po3enioaemocsi npooiema Mooent08anHs NOWUPerHs iHopmayii' y coyianbHux
Mmepedicax. Byno posensanymo Kinbka nioxooié ma memoois 015l Y020, ajie OCHOGHA y8aza NPUOLIEHA A2eHMHOMY NIOX00Y.
Byno 3anpononosano posesoamu 6 nooanbuiomy ROUWUPEHHs THHOPMAYIi 3 YPaxXy8anHsIM epyn Y COYLANbHIL Mepedici,
3anpPONOHOBAHO MOOEb, WO 30AMHA NPOGOOUMU MAKe MOOEOSGAHHS MA 3POOJIEHO AHATI3 OMPUMAHUX Pe3YIbmamis.

Knrwuosi cnosa: nowupenns ingopmayii, coyianvui mepedxci, MOOem0O8AHHA, aA2eHMHUL NIOXi0, epynu,
3aNpPONOHOBAHA MOOENb, AHANI3, MEMOOU

Abstract. This publication addresses the issue of modeling information diffusion in social networks. Several
approaches and methods have been examined, with the primary focus on the agent-based approach. It has been proposed
to consider information diffusion in the context of groups within a social network. A model capable of performing such
modeling was suggested, and the obtained results were analyzed.

Keywords: information dissemination, social networks, modeling, agent-based approach, groups, proposed
model, analysis, methods

ComianbHi Mepexi ChOTOJIHI BiAIrPalOTh KIIOYOBY POJIb Y JKUTTI CYCIIIBCTBA, BUCTYIAIOYH
HE JIMIe IaTgopMaMu AJis CIIUIKYBaHHS, ajle i MOTy>KHUMHU 3aco0amMu OIUpeHHs iHpopMarllii Ta
B33a€MOJIiT MK KOpUCTyBauaMu. Po3yMiHHS MeXaHI3MiB MOMMPEHHS iHpOpMallii B IIMX Mepekax €
KPUTUYHO BaXJIMBUM JJIs OaraTbox cdep, BKIOYAIOUYN MapKETUHT, MOJITHKY, COLIaIbHY JUHAMIKY
Ta Oi3Hec-crparerii. OfHAaK aKTUBHHUH BIUIMB COIIAJIBHUX MEpPEX MOPOIKYE HU3KY BHKIHUKIB 1
npoOieM, TakuX sSIK MOIIMPEHHs (EeHKOBUX HOBMH, BIpYCHHUN MapKeTHHI, (JOpMYBAaHHS IPyHOBOI
QYMKH Ta TOBEAIHKOBUX MaTepHiB. BUBUEHHsS WX SBHII € CKIATHUM 3aBIAaHHIM Yepe3 BUCOKY
JTUHAMIKY ¥ CKIIQHICTh CUCTEMH, 110 BKIIIOYAE BEJIUKY KUTbKICTh KOPHCTYBAYiB Ta iX B3a€MO3B’A3KiB.

KpiMm Toro, 3poctanHst 00csriB JaHUX 1 PO3BUTOK HOBITHIX TEXHOJIOTIH, TAKUX SIK IITYYHUN
IHTENeKT, MallMHHE HAaBYaHHS Ta aHaji3 BEJIUKUX JaHUX, CTBOPIOIOTH HOBI MOJKJIMBOCTI JJIs
BJIOCKOHAJICHHS MAaT€MAaTHYHOT'O MOJICTIOBaHHS MporieciB nomupeHas iHdopmarii. Lle mo3Bosse
MiBUIIUTA TOYHICTh 1 PEANICTUYHICTh MOJENeH, a TaKoX TIHOIIe 3pO3yMITH 3B S3KH MIXK
¢dakTopamu, 1110 BIUIMBAIOTh HA MOIIKWPEHHS 1HPOpMAIIii.

BincyTHicTh  yHIBEpCaJbHMX MoOJeNel, $KI OJHOYACHO BPAaXOBYIOTh IHIMBIIyalbHI
XapaKTepUCTHKU KOPUCTYBauiB 1 II100abH1 BIaCTUBOCTI MEpPEXK1, CTBOPIOE HAYKOBUH 1 TPAKTUUHUN
3aMuT Ha pO3pOOKY HOBHX MIIXO/IB 1O MOJIETIOBAaHHS. ICHY€ moTpeda y CTBOPEHHI IHCTPYMEHTIB JJIst
nepea0aueHHs MPOIECiB MOMUPEeHHs 1H(hOpMaIlii B Mepexax, 00poThOr 31 cmamoMm, (PeiKoBUMH
HOBMHAaMHU Ta HETaTUBHMMHU BIUIMBAMH Ta pPO3POOKM HOBUX CTpaTerii A MpaKTUYHOTO
BUKOPHUCTAaHHA B O13HEC1, MAPKETUHTY Ta MOJITHIII.

[Tommpenns iHGopMalii B COLIATbHUX MEpeXax € CKIaJHUM 0arato(pakTOpHUM MPOLIECOM,
KU noTpeOye eTanbHOro aHalli3y Ta MOJEIIOBAHHS JUIsl pO3yMIHHS HOr0 MEeXaH13MiB 1 IMHAMIKH.
JJ1s 1bOTO 3aCTOCOBYIOTHCS Pi3HI MIJXO/IH, TaKi K CTATUCTHYHI MOJIEINI, areHTH1 MOJEJI, COIiaTbHO-
€KOHOMIYHI MOJEeJi, MOJENI CKJIAQTHUX MEpeX 1 Mojesl MamuHHOTO HaB4YaHHSA. KoxkeH i3 1ux
MiXO/AIB Ma€ CBOT MepeBaru i 0OMeKeHHSI.

30KpeMa, CTaTUCTUYHI MOJIEN1 103BOJISIOTh BUSIBIIATH 3arajibHi 3aKOHOMIPHOCTI B CTPYKTYpI1
Mepexi, aje He BPaxOBYIOTh I1HJIUBIAYaJIbHUX OCOOIUBOCTEH KOpHCTyBauiB. ATEHTHI MoOAemi
HAJalI0Th MOKJIMBICTh BIITBOPIOBATH MOBEIIHKY OKPEMUX KOPUCTYBaUiB 1 aHaJI13yBaTH iXH1 cTpaTerii
B33a€MOJIii, MPOTE BOHM YacTO MOTPEOYIOTh 3HAYHMX OOUYMCIIOBAIBHHX pecypciB. ColianbHO-
€KOHOMIUHI MOJIeJIl aKLEHTYIOTh yBary Ha BIUIMBI COLQbHUX 1 €KOHOMIYHUX (aKTOpiB, OAHAK
MOXYTh OYTH CKJIQIHUMH JJIs y3arajJbHeHHS. Mogeni CKIaJHUX MepexX MO03BOJSAIOTH aHATi3yBaTH
I100aNbHy CTPYKTYpy Mepexi, ane iXHii (oKyc Ha B3a€EMOJISX BY3JIB HE 3aBXKIU JI03BOJISIE
JOCTIIUTH TOBEIIHKY OKpeMHX KOpHCTyBauiB. HapemTi, Mojeni MAalIMHHOIO HaBYaHHS
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AaBTOMATH3YIOTh aHai3 BEIUKUX HAOOPIB AAHUX, OJHAK MOXYTb OyTH OOMEXEHUMH Y MOSCHEHHI
MPUYMHHO-HACIITKOBHUX 3B’ SI3KiB.

PizHOMaHITTS MiAX0IB BioOpaXkae CKIIaIHICTh caMoro sBuia. Hanpukiian, cepen areHTHUX
MoJiesiell OKpeMy yBary IpUBEpTaOTh TaKl, sIK MOJIeJIb KOHKYpeHLi [ 1], Moiens moporoBoro BILIMBY
[2], MOoaenb MHUPOKOTo MOMUPeHHs [3], MOeNsb BIUIMBY [4] Ta MOJENH MOMIMPEHHS iHHOBAIlIH [5].
KosxHa 3 HUX UTtocTpye crienudidHi acleKTH MOmUpeHHs iH(opMarltii, mpoTe AJiT MOACITIOBAHHS
peaJbHUX MPOIECIB B yMOBaX CYyYaCHHMX COIIIQJIBHUX MEPEX 4YacTO HEeIOCTaTHhO OOMEXyBaTHUCS
JMILIE OAHUM M1IXOI0M.

BincyTtHicTh yHiBepcanpHOI Mojelni, sika O BpaxoByBaJla sIK 1HIWBIAyalbHI OCOOJIMBOCTI
KOPHUCTYBaYiB, TakK 1 TJI00AJBbHI BIACTUBOCTI MEPEXi, CTBOPIOE 3HAYHI BUKJIMKHU IS JTOCIIIKEHHS
nomupeHHst iHpopmanii. Ile Bumarae po3poOku KOMOIHOBaHUX MiIXOAIB, sIKIi O 00’enHyBamu
nepeBard pizHUX Mojeliel, 3a0e3Meuyrovr TOUYHICTh aHaIi3y, BpaxyBaHHs COIIaIbHO-EKOHOMIYHUX
daxTopiB i ehekTuBHY 00POOKY BEIUKHX OOCATIB TaHUX.

VY nocmimxeHi [6] po3TISHYTO Ta MpOaHATI30BaHO HaBEJCHI BHINE MOJCNI Ta IiJIXOJH,
3arporoHOBaHO MO (iKOBaHMHA c110ci0 nepedadeH s piBHIB MOMMPEHHs iHpopMalii y coniaabHin
Mepexi 3a JOINOMOror areHTHoro miaxony. Ciifi OKpeMO HaroJIOCUTH Ha BaXKJIMBOCTI BUAUICHHX
IpyN y COLIaNbHIA MEpexi: 3almpOINOHOBAaHUI METOJI BPAXOBYE TaKHW IMOJLI, IO A€ MOKJIHUBICTh
PO3MIIAIaTH IPOLeC NOMPEHHS 3 ypaXyBaHHIM Pi3HUX (aKTOpiB.

Po3pobiena mMoxens (yHKI[IOHYE 3a MPUHIUIIOM WMOBIPHICHOTO aBTOMAara, J€ BCi BY3IIH
MOYAaTKOBO MAalOTh aTpuOyT CTaHy, PIBHUU HYIO. Y pa3i YCHIIIHOTO CHOPUHHATTS iH(opMarii
KOPUCTYBad 3MIHIOE CBid CTaH Ha oauWHUINO. [[ns MonemroBaHHS momMpeHHs iH(opmarii B
colianbHIi Mepexi 3aIpOIIOHOBAHO HACTYNHUHN aJITOPUTM:

a) mepen MOYaTKOM aITOPUTMY BU3HAYAIOTHCS areHTU Agpqr¢, SKI HILIIOIOTH MOIIUPEHHS

iHdopmarrii,;

b) craTtyc areHTIiB 3MiHIOETBCS 3 HYJISL Ha OJIUHHUITIO;

C) obupaeTbcs HmiArpyna KOpuCTyBauiB Vi.ime © V, cepen skux indopmaiis croyarky

HNOMIHMPIOEThCA. Takok 3a7aeTbesi KpUTHUHUN TOPIT Nepiricqr < N TICHS TOCATHEHHS
AKoro iH(opmallis MOYHHA€E PO3MOBCIOKYBATHCS IO BC1i Mepexi;
d) xopucryBaui, siKi COpUiHSIN iHPOPMAIIifO, TTOYNHAIOTH MEpeIaBaTh 11 CBOIM cycifaM 3i
CTaTyCcOM HYJIb 13 IEBHOIO HMOBIPHICTIO, BOJTHOYAC:
1) mepeBipsieThCS, UM HAICKHUTH KOPUCTYBAY JIO IPYIH MEPBUHHOTO MONIHUPEHHS;
2) HMOBIpHICTb NOMMPEHHS Pyyroqq 3MEHIIYETHCS HA Cpenaity (Gnumber) € Cpenaity
1€ Gnumper (1) € Sgroup, AKINO BiATPABHHUK 1 OTpUMyBad iH(pOpMaIlii HaTeKaTh 10
PI3HUX TPYII;
3) BUKOHYeThCS Crpoda nepenadi iHpopMarii;
4) SKIIO TOUIMPEHHS B MEXaxX MEpeXi CTae HEMOXJIMBUM (HANPUKIAA, 4epes3
00OMeXEeHHS KUIbKOCTI 1Tepalliif), ailrOpUTM 3aBEPILIYETHCS;
5) mporec moBepTaeThCs A0 KPOKy 1) Ta MOBTOPHOETHCS MOTH, JOKH KiTbKIiCTh
1H(HOPMOBaHUX KOPUCTYBAYiB HE JIOCSTHE 3aJaHOT0 NMOPOry Neyiticals
€) KOpHUCTyBadi, SKi CIPUHHSITH iH(QOpPMAIIit0, TOYMHAIOTH MEpeIaBaTH ii BCIM CBOIM Cyciiam
31 CTaTyCOM HYJIb 13 IEBHOIO HMOBIPHICTIO;
1) WMOBIpHICTH 3MEHIIYETHCS, SIKIIO BiIMPABHKUK 1 OTPUMYBay HAJIEKAaTh JI0 PI3HUX
rpym;
2) poOuThes cripoda MOMIMPUTH iHPOPMAILiTo;
f) anroputm 3aBepury€ThCS, KO BCi By3JM V 3MiHWIIM CBili CTATyC HA OJAWHHUIIIO;
g) SIkmio € HOBI By3IH, sIKi 3MiHWJIM CBili cTaH, a00 BUKOHaHO MeHIe 10 iTepalliif, anroputm
MOBEPTAETHCS JI0 KPOKY €).

3Bakaroun Ha BCl (DaKTOPH, PEKOMEHYE€TbCS BUKOPHCTOBYBAaTH WMOBIPHICTh MOIIWPEHHS
ab0 KUIBKICTh 3B’S3KiB AK KPHTEPIi MU BU3HAYEHHS KOPUCTYBAYIB Y Vprime. Y PEAILHUX yMOBax
TaKUMM KOPHUCTyBauyaMH 3a3BHuail € HaMMOMITHIIN ¥ HaledeKTHBHIII MOUIMpIoBayl 1H(opMarii.
Kpim toro, 3Ha4eHHs Nirjrjcqr MOKE BUSHAYATHUCS 3AJIEKHO Bijl KUTBKOCTI KOPUCTYBAYIB Y Virime-
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[IpoBeneno MojentoBaHHS A JBOX comiambHUX Mepex 3 2000 xopucryBauiB Ta 5000
KOPUCTYBa4iB 3 PI3HOIO KUIBKICTIO areHTiB Ta iX pO3TallyBaHHS Y COIIAJbHIA MEpPEexKi.
[IpoananizoBaHO MOIMIMPEHHS B KOXHIM OKpeMid rpymi Mmepexi. Huxue Ha Puc.1, Puc.2 Ta Puc.3
HaBEJICHO JIesIKl pe3yJIbTaTH MOIUpPeHHs Yy Mepexi Ha 5000 BepIuH 3 OJHUM [TOYaTKOBUM areHTOM,
31 CTa areHTaMM pPO3TAaIIOBAHUMHU I10 BCil MEpexi Ta 31 CTa areHTaMH 30CEpPEKCHUMH B OJIHIH IpyTIi.
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Puc.2 — Jlunamika IOIMPEHHS 13 CTa ar€HTaMH BILTUBY

Dynamics of spreading per step for each iteration
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Puc.3 — Jlunamika NOIIMpPeHHs 13 CTa areHTaMH BIUIMBY B OJHIH rpymi

BUCHOBKU

OpHMM 13 KJIFOUOBUX aCTIEKTIB MOJIEIIOBAaHHS MMOMHUPEHHS 1H(OopMallii B COLIATIBHUX Mepexax
€ TIOZIT MepeXi Ha IPyNH, 10 BijoOpaxae ii pUpoaHy CTpYKTYpy. Takuil moxain Moxe 6a3zyBaTucs
Ha PI3HUX KPHUTEPIAX, HAIIPUKJIaA, MOBa CIIJIKYBaHHS, CIUIbHI 1HTEpecH (CIOPT, irpoBa IHIYCTpIs,
HayKa ToII0) abo 1HII XapaKTepUCTHKU. MoJemoBaHHs MOIMUpPEHHS 1H(opMalii B Mexax KOXKHOT
TPYyIH Ta MiXK HUMH JTO3BOJISIE CIPOCTUTH 33/1a4y, IEPETBOPIOIOYH 11 3 iIHMBITyaTbHOTO aHATI3Y IS
KO>KHOT'O areHTa Ha MPOLEC OL[IHIOBAaHHS AMHAMIKU MOIIUPEHHS A LUIMX TPYIl 3aJI€KHO BiJ THITY
iH(dopmaii.

[lepcneKTUBHUM HANpsIMKOM TOAAJBIINX JOCIIIKEHb BOauaro po3poOKy MojeneH, sKi
BpPaxoBYIOTh OCOOJMBOCTI B3a€MO/IIi MIXK I'pylaMH, a TaK0XX ONTUMI3allisg METO/IIB 1 MapaMeTpiB JUIs
TOYHOI'O MOJIENIIOBaHHS MouMpeHHs iHdopmMarii. Cepell NOTEHIIMHUX MIIXOMAIB IO PO3MIALY —
MoJieb KIITUHHUX aBTOMATiB, MOJIENb arperauii oomexxeHoi nudysii, mogens Iletpi Ta HellpoHH1
Mepexi. AHalli3 Ta MOPIBHAHHS LUX MOJEIEeH MOXYTh CHPUSATH BHSBICHHIO MOXIIMBOCTEH IS 1X
MOKpAIeHHs] Ta ajanTaimii 10 crenuiku JociipKyBaHoi mpobimematuku. lle, y cBow depry,
BIJIKpUBA€ TEPCHEKTUBU CTBOPEHHS TOYHOI, IIBUAKOI Ta €(EKTUBHOI MOJENi MpOTHO3YBaHHSI
NOUIMpPEeHHs 1H(OopMallii B COI[IaIbBHUX Mepexax.

Cnucok nocuJaaHb.
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YJIK 004.8
Bit P.B., Ma3ypeus O.B. (Xuervnuyvruii nayionanvnuu ynieepcumem, m. Xmernonuyvkuii, Ykpaina)

TEMATHYHA KJTACU®IKALIA TEKCTOBQ:I' IH®OPMAIIIl 3ACOBAMHU OBPOBKHU
IMPUPOJHOI MOBHU

Anomauin: 3anpononosano nioxio 0o memamuyroi knacugixkayii mexcmosoi ingpopmayii 3acobamu 06podOKu
nPUPOOHOI MOBU OISt ABMOMAMUZOBAHO20 I0eHMUDIKY8ANHA MA 2PYNYBANHA MEKCMIE 3a OCHOSHUMY memamu. Letl nioxio
cnpuse epekmueniil opeanizayii 30epexicents i GUKOPUCMANHA 8eUKUX 00CA2I8 MeKCcmoeoi iHghopmayii, opeaHizogyouu
cmpykmypoganuii docmyn 00 it smicmy. I[Iposedena kpoc-eanioayis npodemoncmpysana pesyromam mournocmi 0.86, wjo
Ha 0.15 nepesuwye mounicms, ompumany npu sukopucmanti LDA 6e3 0odamkogux moougixayii ons knacugpixayii.

Knrouosi cnosa: memamuuna xnacugixayis, obpobra npupoonoi mosu, LDA, ioemmugixysanns mexcmis,
2PYNYBAHHS MEKCMIG.

Abstract: Approach for thematic classification of text information using natural language processing tools for
automated identification and grouping of texts by main topics is proposed. This approach contributes to the effective
organization of storage and use of large volumes of text information, organizing structured access to its content. The
cross-validation demonstrated an accuracy result of 0.86, which is 0.15 higher than the accuracy obtained when using
LDA without additional modifications for classification.

Keywords: thematic classification, natural language processing, LDA, texts identification, texts grouping.

[TocranoBka npoOiemMu

Temaruuna KJIaCI/chiKauiﬂ TEKCTIB € TIOIHUPEHUM Hi,[[XOI[OM n0 00poOkM Ta aHami3zy
HECTPYKTYPOBAHHUX 1 HamiBCTPYKTYPOBaHHX [TaHHUX B opraH13au1;1x [1]. Le¥ npouec nossrae y
IpyIyBaHHI TEKCTOBOI 1H(1)opMau11 3a MEBHUMH KaTETOpiSIMU UM TEMaMH, IO O03BOJISE BHUSBIATH
KJIFOYOBI 171€1, TeHeHLIT Ta 1a0JI0OHH B JJAaHUX.

3acToCyBaHHs aJrOPUTMIB MAIIMHHOT'O HABYAHHS JJa€ 3MOTI'Y aBTOMATU3yBaTH aHai3 TEKCTIB,
BUKOPUCTOBYIOYM KOHTEKCTYaJIbHI O3HaKW, O[O0 3HAYHO IMJBUIIYE IIBHIKICTH 1 TOYHICTb
kiacudikarii.

AHaui3 ocTaHHIX MyOiKaiii

CyuacHi orisiim 4acto (OKYCYIOTbCA Ha IMOBIPHICHMX MiJX0AaX JO TEMaTHYHOTO
MOJIETIOBAaHHS, aje Ba)KJIMBO TaKOK BpPaXxOBYBaTH METOIM, SIKI 0a3yloTbCs Ha JHINHINA anreopi,
OCKLIBKM BOHH 3/1aTHi S(EKTHBHO MPEICTABIIATH TEMATHIHY CTPYKTYPY TEKCTiB [2].

Y céepi TeMaTHIHOTO aHaNi3y TEKCTiB, 3aCHOBAHOTO HA MALIMHHOMY HaBYaHHI, IPOBE/ICHO
YUMaJIo J0CIIPKEHb, OPIEHTOBAHUX HA BUSBJICHHS KJIIOYOBHX CIIB 1 (ppa3, a Takox Ha (popMyBaHHﬂ
N-rpam 3a kputepieM peneBaHTHOCTI. Hampukman, oxne 3 10CIIKEHb BHKOPHCTAJIO MOTIEPETHBO
HagyeHy Mozemb BERT NLP Bix SberDevices, aJlanToBaHy 10 POCIHCHKOMOBHHX TEKCTIB.
Pesynbratu cBiguaTh, 10 e Mmiaxin e(QeKTHBHUHN 1Js aHami3y TEKCTIB, SKIO TeMaTUKa A00pe
pernpe3eHToBaHa Yy HaBYallbHOMY Habopi nanux [3].

Ille onHe mociiAKEeHHS BHUBYAIO BIUIMB IPUPOJHUX KpHU3 Ha (PYHKIIOHYBaHHS JIAHIIOTIB
MOCTa4YaHHsI, BUKOPUCTOBYIOUH JIaHI COLIabHUX Mepexk. st 1boro Oyia po3poliieHa CTPYKTypa,
10 JI03BOJsIE aBTOMAaTMYHO OI[IHIOBAaTM BIUIMB KpW3, Takux sk mnaHgemis COVID-109.
BukopucToBytoun aHaii3 TEpMiHIB CIUJIBHOI'O BXO/KEHHS Ta MOOYA0BY KapTH 3HaHb, JOCIIIHUKU
npoananmizyBaiu 1024 onnaiiH-3BITH. Eyno BU3HAYEHO IT’ATh KJIIOYOBHUX HANpsMIB BIUIMBY Ha
JNIAHIIOTH  [OCTAYaHHs: PO3JAPIOHA TOPTIiBIS MPOAYKTAMH, Xap4OBi MOCIYTH, BHPOOHHITBO,
MOBE/IIHKA CIIOXKMBAYiB Ta JIOTicTHKA. L[ Mojens crana eeKTUBHUM IHCTPYMEHTOM IS MTIITPUMKHU
NPUNRHATTA pillleHb Y KPU30BUX yMOBax [4].

Merta poOOTH Ta MOCTaHOBKA 3aB/IaHb

Meroio poboTu € po3poOka METOMy TeMaTWdHOl Kiacudikarmii TeKcToBoi i1H(opmarlrii
3acobamu 0OpOOKHU TPUPOTHOT MOBH, 3/1aTHOTO MiABHIIUTH TOYHICTH 1 peJICBaHTHICTh TEMAaTUYHOTO
aHai3y, M0 COPUIATHME IPUMHATTIO OOTPYHTOBAHUX PIIIEHb HA OCHOBI TEKCTOBHX JaHUX.

Buxknan ocHOBHOTO Matepiany

Metoa TeMaTUYHOI Knacn(bu(auu TEKCTOBO1 lH(bOpMaI_Ill 3acobamu O6p06KI/I HpHpOI[HOl MOBH
Ja€ 3MOory nepeTBOproBaTn BXII[HI TEKCTOBI IlaHl y BI/IBII[ y BI/IFJ'IHIII KIIBKOCTI TEM, ,Z[OMlHyIO‘{Ol TEMHA
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KOXKHOTO JOKYMEHTa Ta PO3IIMPEHOr0 CIHUCKY KIIOYOBHX CIIB I KOXKHOI 3 TeM (puc. 1).
Po3pobniennii  migxig TOEAHY€ THYYKICTb TEMAaTHYHOTO MOJEIIOBAHHS 3  MOXKJIMBICTIO
ABTOMATHYHOTO PO3LIMPEHHS KIIIOYOBHX CIiB, 3a0e3nedyioun e()eKTHBHUN TEeMaTHYHHUH aHai3
TEKCTIB.

Bxioni oani:
- JOCTiTKyBaHHH Hadip TeKCTiB:

v

Eman 1. ITiozomosxa 00cHiONCY6AHO20 HABOPY MeEKCMIG
- TOKeHi3allig: - TeMaTH3aIlig: - BHIATeHHA CTO-CIiE.

v

Eman 2. 30006aGHHA NOYAMKOGUX napamempie moodeni LDA
- KiTbKiCTh TeM TOIIO;

2

Eman 3. IlepemeopeHHA 0OKYMEHMIG ¥ 6€KMOPHE NPEOCMAETEHHA
- BeKTopH3ania TF-IDF;

v

Eman 4. Haéuanna LDA
- 119 KO/KHOTO CII0BA B KOKHOMY JOKYMEHTi O0IHCIHOETHCA MOKITHBICTD
IPHHATIEAHOCT] 10 KOAKHOI TEMH:
- HAa OCHOBi HMOBIpHOCTeH CTiB ¥ TeMax Ta HMOBipHOCTeH TeM y JOKyMeHTax
[epepaxoBYIOTECH PO3IOILITH TeM Ta CTiB;
- BH3HAUeHHA MHOKHHH KIHTOBHX CIIB 1711 KOKHOI 3 TeM.

v

Eman 5. JonoeHeHHA KTIOUOGUX C1I6 KONCHOI MeMU WiTb06UMU 06 €KMamu

v

Buxioni oani

- KITbKICMb KIACIE (eM) ¥ eudbipyi;
- HPU3HAYEeHA OOMIHVIOUA MeMa O1A KOHCHO20 MEKCIY;
- HEpeNiK KIHUO8UX CNi6 ONA KONCHOT meMl.

Pucynok 1. Etanu MeToay TeMaTHuHOi Ki1acudikallii TekcToBoi iHpopmalii 3acobamu 00poOKu

IIPUPOJHOI MOBHU

Etam 1 (IligroroBka TEKCTOBHMX JaHKMX) BKIIIOYA€ TOKEHI3AIlIIO, JEMATH3AI[II0 T BHIAICHHS
CTOT-CJIIB, IO 3a0e3Meuye YUCTOTY Ta CTaHAAPTU3AII0 BXIJHOTO TEKCTY ISl MOJATBIIOI OOPOOKH.
Eran 2 (HanamryBanus napamerpis moneni Latent Dirichlet Allocation) LDA nanamroByeTbcs Ha
BU3HAYEHHS KUIBKOCTI TE€M Y TeKcTaX. SIKIIo MapaMeTp KUIBKOCTI TeM He BKa3aHUM, MOJENb
ABTOMATUYHO O0Mpae oNnTUMaNbHY KibKicTh TeM. Etan 3 (HaBuanus moneni LDA), Ha nbomy etarti
00YHCITIOIOTHCSI KMOBIPHOCTI TOTO, IO CJIOBA HAJIEKATH JI0 MIEBHUX TEM, & TOKYMEHTH — JIO OKPEMHUX
kareropiil. Lle no3BoJisie 3a po3po0IeHUM METOIOM TeMaTHYHOI Ki1acu]ikallii TeKcToBOi iHpopmMarii
3acobamMu 0OpOOKM MPHUPOJHOI MOBH BH3HAUUTH PO3MOALT TEM y TEKCTax 1 chopMyBaTH KIHOYOBI
CJI0Ba IS KOJKHOI TEMH.

Eran 5 1IOmOBHIOE MHOXHWHM KIIFOYOBHX CJIIB KOXKHOI TeMHM NUIBOBUMHU 00’ €KTaMH 13
BpaxyBaHHSAM KJIIOUOBUX CJIB M IMEHHHUKOBHMX CYTHOCTEM MpeIMeTHOI 00JIacTi, L0 JOCATTH
MiBUIIUTA TOYHICTh BHSIBICHHS IIJTHOBUX O0’€KTIB MPEAMETHOI 00JacTi BHACTIIOK BpaxyBaHHS
IMEHHUKOBUX cyTHocTel. Lli1boB1 00’ €KTH BUCTYNAaOTh 00’ €THAHOI MHOXHHOIO KJIIOUOBUX CIIiB,
3HaWJIEHUMH METO/IaMH TOUIYKY KJIFOYOBHX cliiB 6€3 noBTopiB, Ta NER-MHOXMHOIO, sIKa 3rpyHoBaHi
HIISXOM JIeMaTU3allii.

BuxigHumMu JaHUMH METONY € KIJbKICTh T€M BHUOIpPKHM, BU3HAuYEHA JOMIHYIOYAa TeMa JUIs
KO>KHOTO TEKCTY, TIEpEITiK KIIFOYOBUX CITIiB IO KOXKHOT TEMH.
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3anpornoHOBaHUA METOJ TEMaTHYHOI Knacn@iKauﬁ TEKCTOBUX JAHUX CTBOPEHO st
aBTOMAaTH30BaHOTO meHTI/I(i)leBaHH;{ Ta TPYNyBaHHsS TEKCTIB 32 OCHOBHUMH TeMaMH. Lle# miaxin
cupusie e(beKTHBHm opraH13au11 BEIMKUX OOCATIB TEKCTOBOI iH(opMaii, 3abe3nedyroun
CTPYKTYpOBaHUH JOCTYII 10 ii 3MiCTy.

ComuianbHi Mefia TeHEPYIOTh 3Ha4H1 00CATH TEKCTOBUX JaHUX, 1o MICTATh AYMKH, KOMEHTapi
Ta 06FOB0peHH${ BI/IKOpI/ICTaHHH PO3po0IIEHOTO METOny st aHal3y TaKHUX J@HUX JI03BOJISIE
3p03yM1TH OCHOBHI TEMH, SIKi I[IKaBISITh KOPUCTYBauiB, a TAKOXX BUSBHUTH 3arajibHi HACTPOi Yy
CIIUIBLHOTI.

Jlis ipoBeIeHHS TOCTiIKEHHs 00paHo anriioMoBHui natacet “'fake-and-real-news-dataset”,
KM MTO/IiJICHO Ha jBa (aiinm: "Fake.csv"' (mictuth 23,502 detikoi crarti) Ta "True.csv" (MicTuTh
21,417 mocroBipuux HoBUH) [5]. [IporpamHy pearizaliito MeToly BUKOHaHO y cepenoBuiii Google
Colab i3 Bukopucranusm Jupyter Notebook. ¥V mpomeci TemaTHuHOro MoOjAeIIOBaHHS O€3
MOTNIEPETHHOTO0 BU3HAYEHHS KIJTBKOCTI TEM ONTHUMAajbHa iX KUIbKICTh OyJia BCTAHOBJIEHA Ha OCHOBI
KorepeHTHocTi Mozeni — 14 Tem. I'padik KOrepeHTHOCTI, AKHii JEMOHCTPYE MaKCUMAaIbHE 3HAYCHHS,
HaBEJICHO Ha puc. 2.

Sk mokazaHoO Ha pHC. 2, ONTHMaJbHA KUIBKICTh TEM BH3HAYAETHCS TOYKOK MaKCHMAJILHOTO
3HAYEHHS KOTEPEHTHOCTI. SIKIIIO KOTEPEHTHICTh MPOJIOBXKYE 3POCTATH, 1€ CBITYUTH PO MOXKITUBICTh
BUTSATYBAHHS JIOJIATKOBUX TeM. 3BOPOTHA TEHJACHINS YW CTa0imi3amis BKa3zye Ha JIOCATHEHHS
ONITUMAJILHOTO pO3Moiity. BinnoBiHo, TeMaTHYHE MOJIE/IIOBaHHS OyJI0 BUKOHAHO 3 Kiacu(pikaiero
Ha 14 Tem.

optimal_lda_model = model list[coherence_values.index(max(coherence_wvalues))]
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Pucynok 1. BuznaueHHst oNTUMAaNbHOT KiTBKOCTI TEM

Jis HepeBlpKI/I SIKOCTI MOJIeri BIKOPHCTOBYBAINach Kpoc- Basiiaiis 3 n’sitbmMa gongamu [6,
7]. Y pamkax mi€i npouenypu JaHi MOIUISIIM HA 11’ Th YaCTUH, JE HOTHPH BUKOPHCTOBYBANCE 1T
HaBYaHHs, a 0JHa — Ui TecTyBaHHs [8]. IIporiec MOBTOPIOBaBCS I’ATh pasiB, MO 3a0€3MEUHIIO
pPIBHOMIpHE BUKOPHCTAHHSA BCIX YaCTHH Y POJI1 TECTOBOI.

PesynbraTi mokasanu, mio oriHka To4HOCTI craHoBuia 0.71 s 6azoBoro migxoxy 0Oe3
JIOTIOBHEHHS KJIIOYOBMX CIiB A1t TeM Ta 0.86 mpu BUKOPUCTAaHHI pO3IIUPEHOro HAOOpy KIFOUOBHX
cmiB [8, 9]. Sk xmacudikatop 3actocoByBaBcs amroput™M SVC, e HaBYaHHS MPOBOAMIOCH HA
karouoBux ciosax [10]. OuiHKa 0.71 orpumaHa NUISIXOM KJIACHYHOI KJIacHQiKamii Moneni LDA.
Bricoki 3Ha4eHHs TOYHOCTI CBIYaTh MPO SPEeKTUBHICTE METOIY, HE3BAKAIOUM HA HEPIBHOMIDHHM
PO3MOIUT IaHUX MiX KJIacaMH Ta 3Ha4YHY KUTbKICTh TeM [11].

[Tomanbmn gocmikeHHs Oy Iy Th CIPSMOBaH1 Ha MOKpAIleHHs! TOYHOCTI KjIacudikarii 3a yMoB
HEPIBHOMIPHOTO PO3IMOAUTY JaHUX MIXK KJJacaMH, a TAKOK HAa BUBYCHHS aJIbTEPHATUBHUX aJITOPUTMIB
JUISL TEMaTUYHOTO MO/IETIOBAHHS.
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BUCHOBKU

3anpornoHOBaHO TEMAaTUYHOI Kiacudikalii TekcToBoi iHGopmanii 3acodamMu 00poOKU
MPUPOJHOT MOBHU JUIsl aBTOMATH30BaHOTO 1EHTU(IKYBaHHS Ta IPyMyBaHHS TEKCTIB 32 OCHOBHUMH
temamu. Llei miaxin cnpusie eekTuBHIN opraHizanii 30epexeHHs 1 BUKOPUCTaHHS BEIMKHUX 00CSTIB
TEKCTOBOI 1H(OpMAIIil, OPTaHi30BYIOUH CTPYKTYPOBAHUHN JOCTYII A0 ii 3MICTY.

3anmponoHOBaHUI METOT BIPiI3HAETHCS BiJl aHAJIOTIB MOKIIUBICTIO JTMHAMIYHOTO BU3HAYCHHS
TEM 3aBASKH BHKOPHCTAaHHIO TEMaTHYHOTO MOJICNIOBAHHSA, a TaK0X PO3IIUPEHUM HAOOpPOM
KIIOYOBHX CIIB. Y I[bOMYy METOJiI IO€JHYIOThCS KIIIOYOBI CiioBa, oTpumani uepe3 LDA, 3
JOJJATKOBMMHU IIJTbOBUMHU TE€pMiHAMHU, PEIEBAaHTHUMH J0 PEeAMETHOI 001acTi.

MeTton OyB peanizoBaHHil IPOrpaMHO Ta MPOTECTOBAHUN Ha aHTJIOMOBHOMY HAOOpi JaHUX.
3a pe3yabTaTaMd TEMaTHYHOTO MOJETIOBAaHHS OyJ0 BCTAHOBJICHO ONTHUMANbHY KUIBKICTH TEM Yy
nataceti 14. [IpoBeaeHa Kpoc-Bajiallis MpoIeMOHCTpYBaia pe3ysbrat TouHocTi 0.86, mo Ha 0.15
NEepeBUILyE TOYHICTh, OTpHUMaHy Hpu BuKopuctanHi LDA 06e3 momaTkoBux Momudikamiil mas
kiacudikarii.
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mAXO0Anu 10 NONEPENJHBOI'O OITPAIIIOBAHHS YHACOBHX PAIIB JJI51
NIABUINEHHSA TOYHOCTI IPOI'HO3YBAHHA HEUPOMEPE KEBUMHU
3ACOBAMHA

Anomayin: Y pobomi npedcmasieno 08a nioxoou 00 NONepPeoHbO20 ONPAYIOEAHHS YACOBUX PAOI8 3 MEmOI0
niOGUIeHHA MOYHOCII IX NPOSHO3Y8ANHS 3a OONOMO2010 Helipomepedcesux Memoois. Ilepwuii nioxio noaseac 6 nepexodi
3 uacoeoi obracmi 6 uwacmomuy 3 GuKkopucmaumuam nepemeopenus @yp'e. [pyeuii nioxio sabesneuye cymiche
BUKOPUCMAHHA OAHUX, NPEOCTNABNIEHUX AK Y Yaco8ill, max i 8 wacmomuiti oonacmsax. Excnepumenmanvre mooentosanis
000X Memodi8 3 BUKOPUCIMAHHAM apXimeKmypu 21uboK020 HABYAHHA NIOMBEPOUIo ix edheKmusHicmv, npu YboMmy Oewo
Kpawi pe3yiomamu 6y10 OMPUMAHO 051 NEPUL020 NiOX00).

Knrwowuosi cnosa: uacosi psaou, npozHo3yeanis, HEUPOHHI Mepedici, Nonepeore Onpaylo8ants, nepemeopeHts
Dyp’e, 3amina 03HAK, POULUPEHHS O3HAK.

Abstract: The paper presents two approaches to preprocessing time series data in order to improve the accuracy
of their forecasting using neural network methods. The first approach involves transitioning from the time domain to the
frequency domain using Fourier transform. The second approach ensures the combined use of data represented in both
the time and frequency domains. Experimental modeling of both methods using deep learning architectures confirmed
their effectiveness, with slightly better results achieved for the first approach.

Keywords: time series, forecasting, neural networks, preprocessing, Fourier transform, feature substitution,
feature expansion.

[TporHo3yBaHHS YacOBUX PSJIIB € OJHICI0 3 HAHBAKIUBIINIUX 3a7a4 Y CY4YacHIN aHaTITHII
naHux. B ymoBax cTpiMKOro 3poctaHHs oOcsriB iH(opmalii Ta CKIaAHOCTI CUCTEM, 3 SKUMHU MU
CTHKA€EMOCS, BUKOPHCTaHHSI HEHPOMEPEKEBHUX 3aCO0IB IS Li€T METH CTa€ BCE OUTBII MOIMYJISIPHHUM.
AKTYyalbHICTh 33/1aul MPOTHO3YBAaHHS YacCOBHUX Ps/IiB 30KpeMa HEWPOMEPEKEBHUMH 3aco0amMu B
PI3HUX TPHUKIAJHUX OOJIACTSIX 3YMOBIIEHA IMOTPEOOI0 y TOYHMX 1 CBOEYACHHX NPOTHO3aX ISt
yIpaBIiHHS PecypcaMu, ONTHMi3alii HaBaHTaXeHHs Ta 3MeHuIeHHs ButpaT [1]. Helipomepexi
rIMOOKOro HaBYaHHS 3/1aTHI €(PEeKTHUBHO aHalli3yBaTH CKJIaJHI MAaTepHU B JIaHUX, 110 JIO3BOJISIE
MOKPAIIXUTH MPOrHO3YBaHHA CIOXHMBAHHS €Heprii, BAPOOHUIITBA 3 BiAHOBIIOBAJIbHUX JIXKEpeJl Ta LiH
Ha ejnekTpoeneprito [2]. Ile ocoOnMBO BaXJIMBO B yMOBaX HECTaOIIBHOCTI PHHKY Ta 3MiHH
KJIIMaTUYHUX YMOB, JIe TPAIUIliiiHI METOAN MOXYTh OYTH HEIOCTaTHBO €(PEeKTUBHUMHU.

Opnnak, He3BaKAlOYM HA TOTEHIIIWHI TepeBarw, MJaHWUW MIAXI CTHUKAETHCS 3 HU3ZKOIO
cepitoznux mpobaem [1], cepen sIKMX CIiJ BUAUTUTH HECTAOUIBHICTh JaHUX, HA SKUX 0a3yrOThCS
MIPOTHO3U, BUMOTH JI0 OOYHCIIIOBATILHUX PECYPCiB, MPAaBWIbHUM BHOIp apXITEKTYpH HEMpoMepexi Ta
BUKOPUCTaHHS KOPEKTHUX METOIB IONEPEIHbOr0 OMNpAIIOBAaHHS JaHMX. BiiacHe BHpillIEHHIO
OCTaHHBOI 3ajaul IPUCBSIUYEHO 10 POOOTY.

Ha cborosHi icHye 4MMano TeXHIK MONepeJHbOr0 ONpallOBaHHS JaHUX, 3aCTOCYBaHHS SIKMX
MO’K€ MiIBUILIUTH TOYHICTh 1 HAaBITh 3MEHUINTH TPUBAJIICTh MPOLIETYpU HaBYAHHS 00paHOi MOJEI.
Cepen HaaiiiHUX Ta €()EKTUBHUX HAa CHOTOJHI CIIiJ] BUILIMUTH METOAU MOMEPETHBIO OMPAIIOBAHHS
JMaHuX sKi Oa3yroThesi Ha meperBopenHi ®Dyp’e [2]. 3okpema y [3] 3ampormoHOBaHO CyMicHE
BUKOPHCTAHHS IIbOT'0 EPETBOPEHHS 13 HEHPOMEPEKEIO THITY JJOBra KOPOTKOYacHa ram'siTh. B nbomy
BUTIAJIKY TiepeTBOpeHHsT Dyp’e BHKOPHCTOBYBABCS /ISl OTpUMaHHs (Da3d KOMILIEKTHOTO 4YHCIa i
3aMiHM BIIUTIKIB YacoBOi MOCIIZOBHOCTI Ha BMIIEBKa3aHy O3HaKy. ABTOPH IMOKa3ald, IO TaKUK
HiJX1J J03BOJIAE 3HAYHO MOKPALIUTH TOYHICTH MPOTHO3IB 1 BOJHOYAC 3a0e3redyye HU3BKY
00YMCITIOBAJIbHY CKJIQJHICTh y MOPIBHAHHI 3 KJIACHMYHUMM MeTojaamu. He3Baxaroum Ha MO3UTUBHI
pe3yJIbTaTH, 3alpOINOHOBAHUM MIAXI Ma€ psAl 0OMeKeHb, 30KpeMa BUKOPHUCTaHHS JiMIIe A1HCHOI
YaCTUHM KOMIUJIEKCHOTO YHMciIa He 3ale3nedye HEOOXiAHOI i1H(GOPMATUBHOCTI Ui IUTYYHOI
HEWPOHHOI MepeXI 110 3MEHIITYE 11 MOTECHITIIHI MOKJIUBOCTI IIOJI0 OTPUMAHHS 1€ OLTBIITOT TOYHOCTI
POTHO3YBAHHS.

VY wmiif po6OTI NPONMOHYETHCS /1B 1HIIMX BaplaHTH BUKOpHCTaHHA mnepeTBopeHHs1 Dyp’e, a
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came (a3u 1 aMIUTITyld KOMIUIEKCHOTO YHCJa JUIsS TMOINEPEIHbOr0 ONpAIIOBAaHHS YacOBUX PSIIB.
3T1IHO TIEPIIOTO MiIX01y, KOKEH BIJUTIK YaCOBOT IMOCiJOBHOCTI 3aMIHIOETHCS Ha a3y 1 aMILTITYy.
TakuM YMHOM BiJI0OYBA€THCS TTOBHUI TIEPEXi/I 3 YACOBOI B YACTOTHY 00JIACTh. 3T1IHO JPYTrOro, KOKEH
BIJIJTIK 9acOBOi TOCIIIOBHOCTI JOMOBIIOETHCSA (D300 Ta aMILTITYJI0OK0 KOMIUIEKTHOTO YHCIa IO
3a0e3meuye MOXKIIMBICTh BpaXyBaHHS IEpEBar OMPAIfOBaHHS YaCOBOTO Py SK B YaCTOTHIN Tak i B
yacoBiii oOmnacTsax. EkcnepuMeHTalbHI OCHTIDKEHHS MO0 OIIHIOBaHHS €(EeKTUBHOCTI 000X
HiAXO/IB BUKOHYBAJIHCS 13 BUKOPUCTAHHS apXITEKTYpH TpaHc(opMepiB Ta 3arajibHOJOCTYITHOTO
yacoBoro psany (3 miarpopmu AEMO) mig yac po3B’s3aHHsA 3aaadi IPOTHO3YBAaHHS PiBHSA
CIOXXHMBaHHS BITPOBOi eHeprii. Pe3ynbraTn ekcrepuMenTiB 3BeieHo y Tabmmmi 1.

Tabmuus 1. PezynpTatu poO0TH apXiTEeKTYpH TpaHCHOPMEPIB MiJ 4ac BUKOPUCTAHHS 000X IMiJXO0/iB
710 TIOTIEPEHHOTO ONPALIOBAHHS YaCOBUX PAIIB

Hl,[[Xl,Z[\i\/ICTpI/IK MASE SMEAP MSE MAE
Hpyruit migxig | 1.501 0.65 22.784 | 4.763

[Mepmmii miaxig | 1.507 0.655 22.78 | 4.768

3a pe3ynpTaTaMH EKCIEPUMEHTIB BHUIHO, IO 3alpONOHOBAHI MiAXOAU TMOMEPEIHBOTO
OTIPAIIOBAHHS YaCOBUX PSAIIB JIEMOHCTPYIOTH JyXKe CXOXKI pe3yibTaTh 3a BciMa MeTpukamu. [Tpote
JIEII0 Kpaill pe3yJabTaTH OTPUMAaHO caMe Ui MEepIIoro MiAXOay, JaHi SKOTO OXOILTIOIOTH JIUIIE
4acTOTHY 00yacTh. lle TOSICHIOETHCS HEOOXITHICTIO aHali3y MEHIIOl KITBKOCTI MaHuX, IO
3a0e3rneyye OiMbIIy TeHepamizaililo Hehpomepexi. IIpoTe iHmi 3amayi moTpeOyrOTh ETAIBHOTO
BHUBYCHHS €()EKTHBHOCTI pOOOTH 000X MiAXO/IIB.,

BUCHOBKU

Y po6oTi npeacTaBaeHo ABa METOJ MONEPETHHOTO OMPAIIOBAHHS YaCOBUX Ps/IiB HA OCHOBI
BUKOPHUCTaHHA TeperBopeHHs Dyp’e. OOuaBa METOIM TMOKA3yHOTh Maike OJHAKOBY TOYHICTh
MPOTHO3YBAaHHS MPOTE JIEMIO Kpalll pe3yJbTaTH OTPUMAHO 13 BUKOPHCTAHHS IMEPIIOTO MiTXOAY.
[Tomanbmi mocmikeHHs 0a3yBaTUMYThCS Ha OIIHIOBaHHS €(EKTHUBHOCTI 000X MiAXOMIB MiJ Yac
PO3B’sI3aHHS PI3HOMAHITHUX 33/1a4 MPOTHO3YBAHHS YaCOBUX PSIB.
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BILUIVB IITYYHOI'O IHTEJEKTY HA JITEW TA IIJJIITKIB: HABYUAHHS,
PO3BUTOK, BJIAT'OIIOJIYYYA

Anomauin: Y cmammi po32na0aemspcs 6niue WmyyHo2o inmenekmy Ha oimeti ma nionimkis, 30kpema y cgepi
HABUAHHA, PO3GUMKY Ma O1a20Nonyyys. AGmop amanizye sK NO3UMUGHI, MAK i He2amueHi ACneKmu 6npo8aOICeHHs
WMYYHO20 [HMENeKmMYy 6 0C8IMHIN NPoyec, a MAKONC MONCIUSL HACTIOKU 0I5t KOZHIMUBHO2O0, COYIANbHO20, NCUXON0SIUHO20
ma ¢izuunozo cmawny Odimei. Ocobausa yeaza NPUOiNAEMbCA NUMAHHAM NEPCOHANI3AYIl HABUAHHS, BUKOPUCHAHHIO
IHMeneKmyanbHux 000amKI6 mMa GUKIUKAM, NO8 S3AHUM 13 3QIedCHICMIO, KibepOynineom i 0Oe3nekorw OaHux.
3anpononosano nioxio 0o iHmezpayii WMyuHO2O IHMENEKMy, WO 6PAX08YE emUUHi ACHeKmu [ CAPAMOBAHUU HA
RIOMPUMKY 300P06020 PO3GUMKY Oimell.

Knrouosi cnosa: wmyunuil inmenexm, oimu, nioaimxu, HA84AHHs, KOSHIMUBHI HABUYKU, NEPCOHANI3AYIS, emUYHI
acnekmu, yughposa 3anexcHicmo

Abstract: This article examines the impact of artificial intelligence on children and adolescents, particularly in
the areas of education, development, and well-being. The author analyzes both the positive and negative aspects of Al
integration into the educational process, as well as the potential consequences for children's cognitive, social,
psychological, and physical states. Special attention is given to the issues of personalized learning, the use of intelligent
applications, and challenges related to dependency, cyberbullying, and data security. An approach to Al integration is
proposed, considering ethical aspects and aimed at fostering healthy child development.

Keywords: artificial intelligence, children, adolescents, education, cognitive skills, personalization, ethical
aspects, digital dependency

IlocTanoBka npo6.aemu. [lounnaroun 3 2007 poky, konu CtiB J[»00c npeacTaBuB CBITOBI
iPhone, mouvanacs 3miHa manmmadTy HE JIMIIE B TEXHOJOTIYHIN, a i y OCBITHIN cdepi. Efidopis
HABKOJIO L€l moAii 3araymuia OUTbIIiCTh MT0000BaHb, MPOTE 3r0JJOM €HTYy31a3M MOoYaB 3racaTh B
MIpy TOT0, SIK MOYaJId CIUIMBATH TPUBOKHI MPOOJIEMHU: Y4HI, a TAKOXK 1XHI BUUTEINl Ta OaTbKU BCe
YacTille BUSBISUIMCSA MPUKYTUMH JIO CBOIX TaJPKETIB, 10 MPU3BOJMIIO J0 LIIOT0 psily HETaTUBHUX
HACJIIJIKIB, BKJIIOYAIOUH MOTIpIIEHHS 0Jaronoiayyys y4HiB, 3pOCTaHHS PIBHS JAENpecii, TPUBOKHOCTI
1 HaBITh [yMOK ITPO caMoryOcTBO. BuuTensm craBalio Bce Baxkue MPUBEPHYTH yBary y4HiB, sIKi 4acTO
BiIBOJIiKaMcst Ha cBoi cmaptdoHu [1]. 3a cTaTHCTHKOIO, 4YacTKa MOITeH, sSKi KOPUCTYIOTHCA
IntepneroMm BikoM Bix 12 1o 17 pokis, ayxe Bucoka: 93% y micrax Ta 88% y ClIbChKiN MiCLIEBOCTI.
3okpema, 98% miTeit poOssTh 11e uepe3 cMapThoHu [2].

3BUYAIHO, CHOTO/IHI HE JIUIIIE IiTH, a i 6arato JOPOCIUX 3aX0IATh Y COlliadbHI MEepexKi uepes
cMmapTdoHu uu rmianmerd. OHaK, HE3BaXKAI0UH HA Te, IIO I1€ Ty>Ke 3PYIHO 3 TOYKH 30PY MiATPUMKH
3B'SI3Ky, Taka I[iJI0J000Ba JTOCTYNHICTh MOK€ BHUKIUKATH MPOOJIEMU 3 KOHTPOJEM IMITYJIbCIB, a
MOCTIMHI OTOBIIICHHS Ta MOBIJIOMJICHHS, 1110 BIUTUBAIOTh Ha KOHIICHTPAIIIO Ta yBary, MOpyuyoTh
COH 1 BUKJIIMKAIOTh 3aJISKHICTh BiJ couiagbHUX Mepex [3]. Ha nomaTok A0 1bOro KOMIUIEKCHUI
PO3BUTOK KOMIT'IOTEPHHUX Ta IHTENEKTYaIbHUX 1H(QOPMALIHHUX TEXHOJIOTIH J03BOJIUB HAOIU3UTHUCS
JI0 CTBOpPEHHs cwibHOro mry4dHoro intenekty (LI). 3'sBuBcs TepMiH «TreHEpaTUBHUM IITYYHUN
IHTEJEKT», 110 BiJoOpakae BayKIMBUI KPOK MPOIIECY CTBOPEHHS 1HTEJIEKTY, MOA10HOTO 10 IHTEJIEKTY
JFO/IMHHU.

Hacnpasni, I He € ynMoch 1HHOBAIIITHUM, IPUHIIUIIOBO HOBUM, ITpoTe mnosiBa y 2022 pori
6e3komToBHOI Bepcii ChatGPT 3Minuna ysBieHHs 0aratbox Jitojieit mpo 1o TexHosorito. ChoroHi
MTYYHAW 1HTEJNEKT, OyIydd TOJOBHHUM TMPOAYKTOM IMGPOBOi TpaHcopMallii CydacHOTO
CYCIIBbCTBA, MPOJIOBKYE CTPIMKO BIIPOBAKYBATUCh Y BCi c(hepH HAIIOTO >KUTTS, HEBIJT€MHOIO
YaCTHHOIO SIKOTO crTano 3actocyBaHHs III-TexHosorii y BUIIIAAlI TOJOCOBHUX MOMIYHHKIB a0o
NOLIYKOBUX cucTeM. llepeBakaioun IIOJUHY 3a HHU3KOIO IapaMeTpiB, IITYYHUH I1HTENEKT
JEMOHCTpPY€ €(PeKTUBHICTh Y BUPILIEHH] 3aB/IaHb Y raity3i MEAUIIMHN Ta OXOPOHH 3/I0POB'S, HAYKH Ta
OCBITH, POMHUCIIOBOCTI Ta Oi3Hecy Tomo [1].

69



OnHe 3 OCHOBHMX MHTaHb, 10 MOPYUIYIOTHCS Y 3B'A3KY 3 LIUM, MOJIATAE y Mepeaadi Hamoi
iHTenekTyanpHoi mpaiii 11, 1o, y cBoro uepry, Tsarae 3a co00r0 GyHIaMEHTAIbHI TUTAHHS 1010 POJTi
BYMTENIB Ta Y4YHIB, a TAKOX IO BIUIUB IITYYHOTO IHTEJIEKTY HAa HaBYAHHS Ta PO3BHTOK ITEH Ta
MIUTITKIB. Y JIOMmKUIBHIA ocBiTi Il cTaB BIpTyaJlbHMM y4YHMTENIEM, TOBApUIIEM 3 HABYAHHS Ta
OMIKYHOM, HAJal04d KOTHITHBHY Ta COIaJibHY MiITPUMKY MAJICHBKUM JITSAM, sIKi (PaKTUYHO €
KIHIIEBUMH CIIOKUBAaYaMH I[bOTO IPOIYKTY [4].

3 mouatkoM manaemii kopoHaBipycy B 2020 poii KiTbKiCTh €KpaHHOTO 4Yacy (IIPOBEACHOTO
Oins expaHiB cMapTQOHIB, TUTAHIIETIB YM KOMIT'FOTEPIB) 3pocia B pasu. Koiu TUTHHA HaBYAETHCA
JUCTaHIIHO (2 AUCTAaHUIHHUMH B IEH mepioa OyinM iHOAI HABITH AUTSAYI CaJKH), TOCUThH CKJIAIHO
3aXMCTUTH 11 B rajpkeTiB. OJIHAK 1HIIA CUTYaIllA 13 cepBicamu Ha ocHOBI [1. BoHn MoxyTh HE mpocTo
HajaBaTu iHGOpPMAITiIo, a I HABYATH, BIJOBIIATH HA 3alIUTAHHS Ta HABITh KOHTPOJIOBATH KOHTEHT
[5].

Bce e Bukimkae mneBHi MoOOIOBaHHS, OCKUIBKH iICHY€ MMOBIPHICTh TOTO, IIO MOXJIUBICTh
MEePEKIJIACTH HAa TEXHOJIOTIi BUPINMIECHHS 3aBJaHb Ta peaii3allil0 KOTHITUBHUX (DYHKIIH ITiJBHIIUTH
3aJISKHICTh Bl HUX, a BIIACHE JIFOJICHKI 3/I0HOCTI 1O BUKOHAHHA IUX (YHKIIH OcnabHyTh, ax J0
nmoBHO1 BTpatH [6]. KpiM TOro, € miarBepKeHUH NPSIMUN CTAaTUCTHYHHUMA 3B'I30K MK KUIBKICTIO
IPOBEICHOTO 3a €KpaHOM IHM(POBHX NPUCTPOIB HYacy Ta MpoOiieMaMH B Taiy3i 30pPOB'S, Bif
¢bi3nyHOro HeOIaromosyyds y BUIJIAI HENPaBWIBHOIO XapuyyBaHHsA Ta HaJMIpHOI Baru Jo
JETIPECUBHOT CHMIITOMATHKH Ta 3arajbHOT0 3HIKCHHS SIKOCTI )KUTTS. Ha BiqMiHy Bij IIbOTO, TIOMipHE
3aCTOCYBaHHS IU(MPOBUX TEXHOJOTIN J03BOJISE 3MIMCHIOBATH YCIIIIHY COILIalbHY IHTErpalilo Ta
3HIKYBATH JIEPECUBHI BIIIYTTsI, IO CIIPHSIE MiABUIECHHIO 3arajIbHOTO PiBHS J0OpOOyTYy.

VY 11bOMY KOHTEKCT1 F'OJIOBHOIO TYpOOTOIO € 3a0€3MeUeHHs TOro, 00 BUMTEI1 Ta I€Aarork Ha
BCiX PIBHAX HE JIHIIe Opay y4acTh y Aiajo3i npo Bukopuctanus I B ocBiTi, a i cipsiMOBYBaJIH HOTO.
Crumynroouu BiAKpUTE OOIOBOPEHHS, PO3AYMHM Ta KPUTHUYHMH aHali3, MOXJIMBO, BAACTHCA
nepeadaunT MpoOJIeMH, BUSBUTH MOXKIUBOCTI Ta PO3POOWTH €TWYHI pPaMKH JUIsi KEPiBHHIITBA
inrerpamnieto Il B ocBity [1]. Takuii miaxia Moxe JONOMOITH BUKOpUCTATH niepeBard I, mpu mipomy
3HIDKYIOYH PU3UKHU Ta TapaHTYIOUH, II0 TEXHOJIOTI] MOKPAIyI0Th, @ HE MOTiPIIYIOTh BUKIIAaHHS Ta
HaBUYaHHS. X04a HEMOXJIMBO MepeI0aYUTH BC1 HACIIIKY BiJl BAKOPUCTAHHS IIIET TEXHOJIOT1, SIKa BCE
IIe MIBHJIKO PO3BHUBAETHCA, 33 JOMOMOTOI KOJIEKTUBHOTO PO3AYMYy MH MOXKEMO CTaTH OiTBII
0013HaHUMHM, TMOIH(POPMOBAaHUMH 1 TOTOBMMH JI0 HOIEPEKYBAJIBHOTO YCYHEHHS IMOTEHLIHHUX
HEraTUBHUX HACIIIKIB.

AHaJii3 ocTaHHIX JocaizKeHb Ta nyoaikaniii. locmikeHHIO TYYHOTO IHTENEKTY, B TOMY
yycli Horo poisi y cgepl OCBITH, 06araTo yBard NPUAUISUIM SIK BITUM3HSIHI, Tak M 3apyOikKHI
nocmigauky, Taki sk Paccen C., Hopgir I1., bo6po H., Konsca O., FOxumeuns C., Sur B., larren C.,
Cy LI, Hr 1., Yy C., Mixensc C., Kanyp A., Bepma B., [ap Croit Ta iH1Ii.

BuninenHs HeBHpIlIEeHUX paHillle YacTHH 3araibHoi npobiemu. He3Bakarouw Ha Te, IO
BukopuctanHd LI B ocBITHbOMY Ipolieci BUBYAETHCS BXKE BIJHOCHO JABHO U ICHYIOTh PI3HOMaHITHI
JOCIIJKEHHS 3 LbOTO MPUBOMY, OUIBLIICTh 3 HUX MpHUCBAYeHa cepi BUIoi ocBitu. [Ipu mpomy,
31€01UIBIIOT0 B HUX HAETHCA MPO TE, K MOXYTh BUKOPUCTOBYBATH IITYYHHUU IHTEJEKT TI1 UM 1HIII
3alliKaBJIeH1 CTOPOHH, a00 SKI MepeBaru Ta HEAOMIKM MOKHA BiJ I[bOIO OTpUMaTH. BTiMm, HaBiTh y
MDKHApPOAHIN MpaKTHIIl Maiike He MPUIUISIETbCA yBara MUTaHHIO TOTro, K BruBae LI Ha niteit — sk
JOIIKUTEHOTO BiKY, TaK 1 MIKOJISIPIB MOJOIINX Ta CTAPIINX KJaciB. BilbI TOro, TOCTiTHUKY BKpai
MaJI0 yBard MpUIUISIOTH caMe OJIaromoIyqIdio Ta PO3BUTKY MiTeH, KOHIIEHTPYIOUNCH 3HOBY K TaKd
Ha TOMY, SIKI NEpPEeBarv/HEJOJIKM OTPUMAIOTh BUMTENI, SKUM YHHOM MOXKHA IMIUIEMEHTYBaTH
IHCTPYMEHTH LITYYHOTO 1HTEJIEKTY B OCBITHIM MpOIIEC TOILIO.

MeTtoro cratTi € BU3HaueHHs MoxJMBOro BIuMBY LI He TiNbKM Ha KUIBKICHI (KUIBKICTb
OTpUMaHUX 0alliB, NIBUAKICTh BUPILIECHHS 3aBAaHb 1 TaK Jajl), aje i Ha sIKICHI TapaMeTpy HaBYaHHS
3 TOYKM 30pY IXHBOTO PO3BUTKY, Taki fK, HANpHKIaJ, PO3BUTOK KOTHITUBHUX HABHYOK a00
NICHXOJIOTIYHE Oyaromnoiyyds. BUBUEHHsS KOXKHOTO 3 IUX HANpPSIMKIB — HAaBYaHHS, PO3BUTOK Ta
Onaronoxyqusi — sBJIsiE COOOI0 OKpEeMe 3aBIaHHs B paMKaX I[bOTO JOCIHIKEHHS.

BukiiajeHHs1 0CHOBHOIO MaTepiajy J0c/ailKeHHsI. ABTOMAaTH3AaIllsl Ta IITYYHUH 1HTEIEKT
paluKaibHO 3MIHIOIOTH PUHOK Ipalli, TOMY III€ 3 MOYaTKy MaHjaeMii KOpOHaBipycCy Ui TOro, 1100
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OyTH yCHIIITHAM, Ha IEPIIUH M1aH ctanu Buxoautu soft skills: HaBUIKM Mi>kOCOOMCTICHOT B3aeMO/Iii,
3MaTHICTh [I0 CIIBIEPESKHUBAHHSA, KpeaTuBHICTh Ta iHme [7]. lle mpusBeno mo TOro, mio
3aTpe0yBaHICTh COLIATBHUX Ta EMOLIHHUX HAaBUYOK, TAKHX SIK 3/aTHICTh BUPILIYBAaTH MPOOIEMH Ta
B3aEMOIISITH 3 IHIITMMU, HA PUHKY Ipalli MOCTIHO 3pOCTaE.

[TigBUIIEHHIO yBard 10 PO3BUTKY IIMX HABUYOK CIPHUSAB Y TOMY YHCII JOCTYN YYHIB O
IaTepHery Ta comianbHUX Mepek. [lommupeHicTs «peiikoBUX» HOBHH, MMIOKYIOUNX 00pa3iB Ta iCTOPIH,
npo0OsieMn KOH(D1IEHIIIHHOCTI Ta 3aXUCTy JAHHUX, @ TAKOXK THCK Ha JITEH Ta MOJO/b, IO 3MYIIYE iX
JIEMOHCTPYBAaTH Ta MiATPUMYBATH BJIACHUHU iJ€ani30BaHMiA 00pa3 Ha T KiOepOyiHTY, pO3JajiB
3JI0pOB's Ta MOPYIIEHB OJIAarONOIyqusi, BKIOYaouu qucMopdodobito, po3iaau XxapuoBoi HOBEIIHKH,
JISTIPECUBHI Ta TPUBOXKHI CTaHH, BU3HAYMIIM HEOOX1THICTh HaAOAHHS YYHSIMHU 3HaHb Ta HABUYOK, 1110
JIO3BOJIIIOTh OPIEHTYBATHCS y CBiTi, B SKOMY BOHHU JKMBYTh ChOTONHI. | JesKi IOCIHITKCHHS
MOKAa3yIOTh, IO ITYYHUH 1HTEIEKT MOXKE CIPUSATH BIOCKOHAJICHHIO KOTHITUBHHUX, COLIaIbHHUX Ta
EeMOIIIIMHIX HABUYOK, JO3BOJISIOYM BHUKJIAJadaM IEPCOHATI3yBAaTH HABUAHHS Ta aHATI3yBaTH SIK
SIKICHI, TaK 1 KUIbKICHI JaHi, II00 OIIHIOBATH PiBEHb BOJIOIIHHS [IMMU HaBUYKaMH Ta 32 HEOOX1JHOCTI
JI0NIOMaraTH y4HsIM OCBOITH ix [6].

Kpim Toro, BYeHi Ha3MBAIOTh 1 iHIII IPUIMHY [T BUBUCHHS II Bike B paHHbOMY Billi [8]:

1. 3HaHHSA Ta pO3yMiHHS OCHOBHHX (DYHKIIIH IITYYHOTO IHTENIEKTY Ta BUKOpUCTaHHA [I-1onaTkiB
€ HEBII'€MHOI0 YaCTMHOK IM(POBOI TPaMOTHOCTI sl BCIX TPOMAJsSH Yy CY4YacCHOMY
CYCHUIBCTBI. Y 3B'A3KY 3 THM, III0 MH BCTYIa€EMO B ertoxy 11, BakiiiBo 3a0€311e9nTH BCIM AITAM
Ta iXHIM ciM'sitM, OCOOJMBO 3 MEHII OJaromoidy4YHHUX BEpPCTB HACENCHHS, MOKJIHUBICTh
OTPUMATH JOCTYN 1O HaBYAHHS ITU(PPOBOI IPAMOTHOCTI, a TAKOK BUKOPUCTAHHS IUPPOBUX
TEXHOJIOT1H, BKIIOYAaI0UX TEXHOJIOT1] IITYYHOTO 1HTEJIEKTY.

2. JliTaM HEOOXiTHO NaTH MOXJIMBICTh BHBYATH, BUKOPHUCTOBYBATH Ta OI[IHIOBATH IITYYHUN
IHTENEeKT TMiJ UIECHPIMOBAHUM KEPIBHHUIITBOM, OCKITbKA BOHHM HE 3MOXYTh CTaTH
rpaMOTHUMH B ramy3i Il 3a 1omoMoror BIacHOTO OE3LITLHOTO JOCIIIKCHHS YM BUIBHOT
B3a€MO/II1 3 TEXHOJIOTISIMU Y IrpanikaMu, siki miarpumytots 1. Takuit minxia, y cBoro uepry,
CIPHUSATHME iIXHHOMY MIKIUCIUIUTIHAPHOMY HaBYAHHIO.

3. Jitu 31aTHI po3ymit ocHOBHI QyHKIIT I, 0co6iMBO KoMK iM HAAIOTHCA MOXKIMBOCTI AJIS
HaBYaHHS, 10 BIANOBIIAIOTH BIKYy Ta IX MOMEPEAHbOMY JOCBiAY. 3aMICTh TOro, 1100 3
HEJIOBIPOIO CTAaBUTHCS N0 3JaTHOCTI aitel BuBuaTu II, a Takok HaByaTHCs 3a HOro
JIOTIOMOT010, IMTOTP1OHO TOTYBATH iX 1O PO3BUTKY BMIHHS CTaBUTH MUTaHHS, JOCIIKYBaTH Ta
MaHIMyJIOBATH MPUCTPOSIMHU 31 IITYYHUM 1HTEIIEKTOM O€3MEeUHO Ta HAIEKHUM YHHOM.

bararo nociiIHUKIB IpU aHati31 BIUIMBY HITYYHOT'O 1HTEJEKTY Ha IIKOJISIPIB HArOJOUIYIOTh
Ha TIlepeBarax, IOCHJIAIOYUCh Ha HaJaHy CHUCTEMOIO LHM(PPOBUX TEXHOJOTIH MOKIUBICTh
3aCTOCOBYBAaTH B XOJi HaBUaHHS IE€PCOHANI30BAaHUM MiAXiJ, IO BPaxoBYye€ 1HJWBIIyallbHI
XapaKTepUCTHKH Yy4HIB. Y 1poMy Bumaaky Il mokasye CBOIO CHPOMOXKHICTH O PO3IIMPEHHS
COLIaTIbHO-EMOIIIMHOT0 OCBITy, 1110 HaOyBarOTh yCi Cy0'€KTH OCBITHIX BIJIHOCHH, MPOTE BAXKIUBO
noOyyBaTH 1€ NPOILeC TaKUM UYHUHOM, I[I00 BIH JaB MOXJIHMBICTh OCMHCICHO MiIINTH 10
HaBYaJIbHOTO MPOIIECY, HE TOOOIOIOUUCH Y TOH e 4ac HeraTUBHUX HACHTIJIKIB, sIKI MOYKE CIIPUYMHHUTH
c00010 BUKOPUCTaHHS J0JATKIB.

IIpu npomMy HEOOXiTHO Mam'sTaTd, M0 PO3BUTOK Ta €BOJIOLIS MpuUTamMaHH1 He Tubku II —
KOTHITHBHI 310HOCTI JIFOJJMHH, 10 MTOCTIMHO B3a€MOII€ 31 IITYYHUM 1HTEJIEKTOM, TAKOX MPHU I[bOMY
3MIHIOIOThCS, OCKIJIBKM KOTHITHBHI orepallii 6e3mocepeIHbO 3aeXaTh Bijl CTYNEHS PO3BUTKY TaKHX
3M10HOCTEH, K COPUUHATTSA, yBara, MIBUJIKICTb 0OpoOKM iHoOpMarlii, mam'ate Toulo. [eneryroun
qacTUHY (PyHKIIH poOOTH 3 iHPOPMAIIIEIO IITYYHOMY 1HTENEKTY, JIOAMHA 3BUIBHSE CBill PO3yM Bif
JIeSIKUX KOTHITUBHHUX OIepalliid, 10 B MPOIECi €BOJIOIII MOXKe MpU3BEeCTH ab0 J0 OCIabJIeHHS
JIO/ICBKOTO 1HTEJNeKTY, aXX A0 TOBHOI Jerpajauii, a0o, HaBMOAKW, 10 3allOBHEHHS 3BUIbHEHOTO
IHTEJIEKTYaJIbHOTO POCTOPY HOBHMH, MOKH 1110 HeBiToMuMHU 31i0HOCTsIMH [9].

OpnHak ncuxivHi BIACTUBOCTI Ta MPOLIECH JIFOJICHKOT ICUXIKU 3aTUIIMINCA HE3MIHHUMU. | 115t
PO3BUTKY TOTO > IHTENEKTy IIKoJsipaM Oyab-KOi TpyIu, BiJ MEpPUIOKJIACHUKIB 10 HOHAKIB,
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HEOOXiTHO BCE-TaKUM PO3BUBATH MUCICHHS, MaM'siTh, ysBY, TOOTO BCi Ti BIACTHBOCTI, Kl
3HAZ00JIATECS M TIOTIM TPOTATOM ychoro xutts [10].

OaHMM 13 KJIIOUOBMX IIMTaHb, Ha SKE JOCI HEMae OJHO3HAYHOI BIAMOBIAI, € Te, 5K
reHepatuBHUH 1l BIUTMBaEe Ha HaBUaHHS, a caMe, SIK JIIOJW Ha0yBalOTh HOBUX HABUYOK, BUKOHYIOYH
3aBJaHHS. BiANoBib Ha IIe MUTAaHHS Mae BUpIMIalbHE 3HAYCHHS, 0coOMMBO B TUX cdepax, ne
reHepatuBHUH 11 CXUIbHMIA 1O TOMIIIOK, Yepe3 M0 eKCIIEPTU-JIF0IU TIOBUHHI TIEPEBIPSITH OTPUMaHI
HUM pe3ynbratd [11]. YV 1mboMy KOHTEKCTI AESKi JOCHITHUKA TPUXOIATH JO BHUCHOBKY, IIIO
B110yBA€THCS BUTICHEHHS KOPHUCHOI HaBYaJIbHOI Ta (Di3WYHOI aKTUBHOCTI, TOOTO Y4HI BiIYyBalOTh
IHTEJIEKTyaJIbHY Ta IICUXOEMOIIIHY HAampyry y 3B'S3Ky 3 HaBYaJbHUM HABAaHTAXXCHHSM, IO
CYIIPOBOJIKYETHCSI HU3BKOK) PYXOBOK AaKTHBHICTIO. Be3yMOBHO, II€ HEraTMBHO BIUIMBaE Ha iX
¢iznyne 6maronoryqus, ke € OJHUM 3 OCHOBHHX ACIEKTIiB IICUXIYHOTO 3/I0POB'S B IIIIIOMY.

MikHapogHa @porpaMa OILHKH OCBITHIX JoCArHeHb y4HiB PISA Busnayae [6]
0JIaroINoIyYHHN PO3BUTOK 3arajioM SIK «IICUXOJOTIYHHM, KOTHITHBHHM, COLIATbHUN Ta (i3MIHUI
CTaHU Ta BIAMOBIIHI 3/11I0HOCT1, HEOOX1THI YYHSIM JIJIS IIIACJIMBOTO Ta IMMOBHOIIIHHOTO XKHUTTS», a CaMe:.

e [lcuxomoriune Oyaromonay4dusi BKIIOYA€ IIJICCOPSIMOBAHICTh Y4YHIB, CaMOCBIJIOMICTb,
3IaTHICTh BiAUyBaTH Pi3HI €MOIii Ta eMOLIHHY CTIHKICTb.

e ComiaspHUI 07aromnoryqdst — 1e SKiCTh COLIaTbHOTO )KUTTS YUHIB, BKIIOYAIOYH CTOCYHKH 3
YJIeHaMH CiM'l, OTHOJIITKAMU Ta BUUTEISIMH, a TAKOXK BIAYYTTS MPUHAIEKHOCTI O IIKUTEHOT
CHUTBHOTH.

e KoruiTuBHE 6Jaromoyqdsi CTOCY€ThCS BMiHHS YUHIB BUKOPHCTOBYBATH aKaJeMiuHi 3HAHHS
Ta HaBUYKH MDKOCOOHMCTICHOTO CHUIKYBaHHA, 1100 HABYATHUCA MPOTATOM YCHOTO JKUTTS,
e()eKTUBHO NPAIIOBATH Ta 3aMaTH aKTUBHY IPOMAISTHCHKY MO3HUIIIIO.

e ®di3uyHe Onaromoiydds — 1€ 3/aTHICTh BECTHU 3JOPOBHH CIIOCIO KHUTTSA, IPYHTYIOUUCH Ha
CaMOCTIHHIN OLIHI TOTpedn y (Ppi3uuHiIll aKTUBHOCTI Ta Xap4UyBaHHI.

OTtxe, sk 0a4nMO, Ii KOMIIOHEHTH OJIaronoiydusi JIOAWHU € BaXJIMBUMH, BIUIMBAIOYH HE
TUIBKH Ha T€, K MU JIEMO 1 PO3BUBAEMOCSA, a ¥ oJMH Ha omgHoro. OmHaK, moo6 po3idpartucs, sk 11
BIUTMBAE Ha MIAPOCTaI0UE OKOIIHHS, HaCAMIIEPE]] BAXJIMBO 3PO3YMITH, IO PYXA€ PO3BUTKOM JIITEH.
OueBHIHO, 110 L€ Ty’Ke CKJIaJHUI MPOLIEC, aJle OAHUM 13 KIIOYOBHX (DaKTOPIB € COL1alIbHA B3aEMOJI1S
JiTeH 3 IHIIMMHU JIFOJIbBMU, K1 iX OTOYYIOTh — SIK TPaBUIIO, 1€ OATbKH, BUUTENI Ta OgHOIITKU. Came
TOMY Ha CHOTOJHIIIHIN J€Hb B OCBITI BCe OLIBINOT 3HaUYMIOCTI Ha0yBae 3a0e3MeUeHHs COI1aTbHOTO
Ta eMOIIIHOTO 01aronoayyus.

OCKUIBKY JIFOM — COILaJIbHI 1CTOTH, HAM MOTPIOHE CIUIKYBaHHS 3 IHIIUMU, MO0 JTOCATTH
ycnixy B KuTTi. CouiaibHUM 3B'SI30K 13 OTOUYIOUMMH MOXKE IMOJIETIIUTH CTPEC, 3aHENOKOEHHS Ta
JIENPECio, MIJBUIUTH CaMOOIIHKY, 3a0e3neuuT KoM@OpT Ta pajicTh, 3al00IrTH CaMOTHOCTI 1
HaBiTh 30UIBIINTH TPUBATICTH KUTTS. MillHI cOIliaibHIi 3B'3KH, 3 OTHOTO OOKY, MalOTh BEIHUYE3HUI
BILJIMB Ha Hallle IICUXIYHE 3/I0POB'S Ta IIACTsl, a 3 IHILIOT0, X BIACYTHICTh MOKE CTAHOBUTH CEPHO3HUI
PH3HK IS TICHXIYHOTO Ta emotiiHoro 3mopoB's [3]. Hampuknan, SImoHis — omHa 3 HalOLIbII
TEXHOJIOTIYHO PO3BMHEHUX KpaiH, aje MpHu I[bOMY PiBE€Hb CAaMOTI'yOCTB TaM OJAMH 13 HaAMOLIbIIKUX Y
cBiTi. TexHozorii 6arato mpoaymaiu 3a JroJiei, BHACIIOK 4yoro 6arato MpoIeciB y CyCHUJIBCTBI
BUSIBUINCS IITYYHUMH. Y TaKUX YMOBaX, KOJIH JIFOMHA MaJIO 110 BUPINIYE 1 32 HEel BCE CIUIAHOBAHO
Harepes, eMOoLii Ta o4y TTs BiAXOAATh Ha APYTHUH IJIaH 1 YaCTO IPUTHIUYIOTbCs. TOMY HE AMBHO, 1110
y CYCIIUTIBCTBI ICHY€ HETaTHBHA TCH/ICHIIIS 10 301IBIICHHS KIJTbKOCTI TAKUX 3aXBOPIOBaHb, SIK HEBPO3
YM TICUXI4HI po3iagu. TakuM YMHOM, IITYYHUH IHTENEKT (aKTUUHO 3aTHUN BIUIMHYTH Ha PiBEHb
HaBiTh HAIIIOTO HAMOJIMKYOrO PO3BHUTKY, a TAKOXK Ha eMoliiHy chepy [10].

3Buuaiino, II 6yB yacTuHOIO XUTTA JiTeH 3a70Bro 1o Toro, sk ChatGPT craB nmomynspHum
Jauile Kuibka pokiB ToMmy. Hacmpasai, II Ouibimn mommpeHuid, HiX OUIBIIICTD JITEH 4M HaBITh
JOPOCIIMX AyMaroTh. BinMiHHUM mpukiIazoMm € cuctema apropekomenpamii YouTube, uwmi II-
AITOPUTMHU MPOMOHYIOTh HACTYIIHI B1JI€O /JIs1 BIATBOPEHHS HA OCHOBI iCTOpIi nmeperisaiB 1uTuHu. Le
Te, 0 MOXKHA HA3BaTH MPUXOBAHUM a00 HEMOMITHUM criocoOoM B3aemoii aitew 3 11 [12].

VY cydacHOMYy CBiTiI Oarato XTo 3 HaC BUKOPHUCTOBYE COIliaJibHI Mepexi, Taki 1k Facebook, X
(panime Twitter), Telegram, TikTok, Instagram 1 Tak nami, o0 cHiiKyBaTHcs OAWH 3 OJHUM. X0o4a
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KOKHA 3 HMX Ma€ CBOI MepeBard, BKIMBO MaM'ATaTH, [0 TaKe CHUIKYBAaHHS HIKOIU HE 3MOXKE
3aMIHUTH peanbHl JoAChKl BimHocuHU. II[00 «3amycTuT» TOpMOHH, $KI 3HIMAIOTH CTpec 1
3MYIIYIOTh BacC MOYYyBATUCS MACTUBIIIMMH, 3J0POBIIIMMH Ta TIO3UTUBHIIIUMU, TOTPIOEH OCOOUCTHIA
KOHTAaKT 3 1HIIMMH JIFOJAbMH. TOMY, HE3BaXKalOUn Ha Te, IO Il TeXHOJIOT1l MOKJIMKaH1 301MKyBaTH
Jroel, HanaTo Oarato Yacy, MPOBEACHOTO B COLIATBHUX MEpEekax, HACIpaBli MOXKE 3MYCHUTH
MOYyBaTHCSl CAMOTHIIIMM Ta OUIBII 130JbOBAHMM, a TAKOXK MOCHIMTH MPOOJIEMU 3 IMCUXIYHUM
3JI0POB'SIM, TaKi SIK TPUBOXHICTh Ta Jenpecis [3].

Ane 3 mosiBoro Il y miTeld 3'sBUBCS HOBUM THIT B3aeMojii — 3 areHtamu II, Takumu six Siri,
Alexa a6o ChatGPT. Tomy BUHUKAE BEIMKE MUTAHHA, Y1 MOXKYTh JITH OTPUMATH KOPHUCTH BiJ LUX
B3aemoAiil 3 Il TakuMm ke YMHOM, K 3 IHIIMMHU JIOAbMU. Tak, HANPUKIAA, y IOCIIIKCHHSX,
nposeneHux npogecopom Iu Croii (Ying Su), aitu Oy qocuts 6anakydi 3 11 — ane e Oinbiie BOHA
Oynu 3amydyeHi, KOJM PO3MOBIISUIM 3 JIIOJMHOIO, YAacTille CHPSIMOBYIOYH DPO3MOBY, CTaBIISYU
YTOYHIOIOU1 MUTAHHS Ta AUITYUCH CBOTMU BJIACHUMH JIyMKaMu. Bce 11e BaKITUBI €IEMEHTH, SKi MAIOTh
BUpilIAIbHE 3HAYCHHS I PO3BUTKY MOBJIeHHs [12].

ToMy 11e OTHMM BaKJIMBUM aCIEKTOM € Te€, SIK JITH CIPUHAMAIOTh INTYYHUH 1HTENEKT, 0
BOHM Bi/IYyBarOTh, B3a€EMOII0YH 3 HUM. JlesiKi eKCIEpUMEHTH MOKa3yI0Th, 110 JIITH CHUIKYIOTHCS 3
Siri abo Google Assistant, ik 3 XKHBHUMH JIIOJbMH: BOHU TOBOpWIIH 3 11, ik 3 OyIb-SKUM 3HaHOMHUM,
I[IKaBUJIUCSL HOTO0 HACTPOEM Ta OCOOHUCTICTIO, JKUTTSAM, PO3MUTYBAIU Mpo OaThbKiB, OYJMHOK Ta
yiro0seH1 pedi. Take CTaBIIEHHS 10 TOJOCOBUX TMOMIYHUKIB € JIOTIYHUM, OCKIJIBKH, KOJH JWTHHA
PO3MOBIIsI€ 3 KUMOCH 10 TenedoHy, il Bianmosigae kuBa moauHa. ToMy A Hel HEOYEBUAHOIO €
pizuui Mixk 11, o iMiTye 10pociy JI0IMHY, Ta BiacHE JIIOUHOIO [5].

[HII1 eKcriepUMEeHTH MOoKa3aliu, U0 AITH MOJIOIIOTO BiKYy (B OJHOMY €KCIIEpUMEHTI TPUPIYHI,
B iHIIOMY — 4-7 pOKiB) CIOYaTKy CTaBisAThCs A0 II, sk 10 moauHM, y To# Yac sk crapuii (6 pokiB B
OJIHOMY eKcIiepuMeHTi 1 8-10 B iHIIIOMY) PO3yMiIOTh, IO, XOUYa IITYYHUN THTENIEKT MOXKE BUTTISAATH,
TOBOPHUTH a00 MISTH SK JIFOJIMHA, HACIIPABAl MOMY HE BHUCTAYa€ 3arajlbHOTO KUTTEBOTO JOCBIy Ta
cnpaBkHbo1 emmartii [13]. BaxxnuBo Takok, 1110 y4HI JIOCSATAIOTh yCIiXy, B3a€EMOJIIIOUU 3 KUMOChH, 3
KM BOHH MOXYTh acoIlifoBaTH cede, 1 XTO, Yy CBOIO Yepry, MOKE acOIlifoBaTH cebe 3 HUMH. A
OCKUTbKH HeBiToMO, uu Moxe I chopmyBaTu Takuii rmuOoKuil 3B's130K, C1iJl OyTH TyKe 00epeKHUMU,
BUKOPHUCTOBYIOYH HMOTO JUJIS CIUTKYBAaHHS 3 JIThbMH. TOMY IO PO3MOBH — II€ HE MPOCTO OOMIH
iH(OopMaIii€ero, 11e 11e i mo0yI0Ba CTOCYHKIB, 1 I1i ACTIEKTH Ty»e BaXJIMBI 1 pO3BUTKY itei [12].

[Hmmit acriekT MoxumMBoro BBy Il Ha corianbHUN PO3BUTOK JITEH — 1€ COIIaTbHUN
€THKET, KOJIU MU TOBOPHUMO «JIAKYIO», «BHOauTe» Toio. [[iTH HaBYaIOThCS IIbOMY Yepe3 B3aEMOJII0
3 IHIIMMH JIFOJAbMH, SIKI MOJIEJIIOIOTh COIIAJIbHO MPUMHATHY MOBEAIHKY. AJle IITYYHUH THTENIEKT He
3aBX]IM TOTPUMYETHCS HAIIUX COIIAIbHUX HOPM 200 320X04y€ BUKOPUCTAHHSI BBIYINBOI MOBH. Tak,
OyJ0 BI1IMIYEHO, IIO CTAaBJIEHHS 10 TOJIOCOBOIO MOMIYHMKA y JAITeH BIJIPI3HAETHCS BIJ IXHBOI
B3a€MO/I1 3 TopocauMu. Un TO MiArIgIa0yu 3a 0aThbKaMu, Y TO OPIEHTYIOUUCH HAa BIACHUM TOCBI,
ajie JITH 4YacTille BUKOPUCTOBYIOTH 1070 Il Haka3HWI TOH, Mpen'sBJISIIOYM BUMOTH a0O HaBITh
oOpaskarouu ioro. I{e Bukiankae moborBaHHS, 1110 TaKa MOBEIHKAa MOXKE MIEPEHECTUCS Ha B3aEMOJIII0
3 moapmMu. He3Bakaroum Ha Te, 10 JIOKa3iB IOTO IMOKHU IO HEMA€E, ICHYIOTh CBITYEHHS, SKi
MPUITYCKAIOTh, IO JAITH MOXYTh MeperMaT MOBHI 3BUYKH 31 CBOiX po3MOB 3 Il Ta BUKOPUCTOBYBaTH
1€ 3r0JI0OM y B3aeMoii 3 iHImMMH. OHaK Bce 1€ 10 KIHISA HesICHO, Y poOJIsATh AITH L€ 3apajiu IpH,
TOMY IIIO LI€ Beceso 1 6e3riny3/10, UM 1€ BiioOpakae peajqbHy 3MiHY B iX moBeiHmi. Jleski koMnaHii-
PO3pOOHUKH BXXKE 3pOOWIIM TIEBHI KPOKH, 100 HIBEIIOBATH II0 MOTEHINIHY 3arpo3y. Hampukian,
Echo Dot Bim Amazon BBIB «BBIWIMBHIA PEXKUM», MPU SKOMY, SKIIO JUTHHA, 3aMHUTYIOYU IIOCH,
TOBOPUTH «Oy/Ib JIacKay, Alexa BIAMOBIAE «JIAKYFO, IO TaK YeMHO 3anmuTainy. O HaK HABITh TaKa,
Ha TIEpIINI TOTIIsA, BipHA CTpaTeris Hece, y CBOI Yepry, 3arpo3y CTHpAHHS, 3 MOTISAY HITEH,
kopaoHiB Mix Il Ta moapmu. [12].

Ile, y cBOrO uepry, Mo>ke MPU3BECTH JO CHUTYyallii, KOIU AITH JOBIPATUMYTH aIrOpUTMaM
OlTBIIIe, HIXK JTFOSIM — ITpo0JieMa, sika TypOye 0aratbox JItoJIel ChbOro/IHI UM He HanoOibre. Tak, neski
BUUTENl TOBOPSAThH, IO M CTYACHTIB €ce, IO BHAAIOTHCA 32 CEKyHAM 1HCTPYMEHTaMHU
renepatuBHOTO I, Takumu sik ChatGPT, 31a10ThCs TOCKOHAMICTIO; SKIIO KOMM'FOTEP TaK CKa3as,
3HAYUTb, 11€ Ma€ OyTH MpaBUIIbHA BiNOBI/Ib. 3aHETIOKOEHHS BUKIIMKAE TOM (PaKT, 10 KPEATUBHICTD 1
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BIICBHEHICTh y €00l YYHIB NPH LbOMY MOXYTh OyTH HpPWAYIIEHI, [0 B KIHLIEBOMY IiJICYMKY
MO3HAYUTHCS Ha IXHbOMY ICHXiuHOMY Onaromnoiydudi [14]. Excrieptu 3a3Ha4aroTh, 110 B yuHis 3 11
3aBX1IM OyJie CIIOKyca He JyMaTH CaMUM, a 3BEPHYTHUCS 3a PIICHHSIM 10 MamuHu. Bike 3apa3 Siri ta
Google Assistant IeBHOIO MipOI0 3aMiHIOIOTH JIiTSIM BJIACHOPYY 3po0iieHy JoMaliHio poooty. Ilpu
[[bOMY BaXIJIMBO PO3YMITH, IO IITYYHHH IHTENEKT YXK€ 3JaTHHHA CHPABIATHACA 3 JESIKUMHU
3aBJIaHHSMU Kpallle 1 MIBU/IIIE HAaBITh JOPOCIOl JIIOJUHH, HE KaXy4yd BXK€ PO AUTHHY, 1 Jdai 1ei
PO3pUB, HIBU/LIE 32 BCE, JTUIIE 301IbIIyBaTUMEThCs. ToMy Bukopuctanns I mij yac HaBuaHHS TiTel
MO’K€ CIPOBOKYBATH JECTPYKTHBHE KOHKYPYBAHHS, SIKE JIUIIE 3HU3UTh CAMOOLIHKY LIKOJISPIB, 60
HEMOJIMBO Ha PIBHUX OOPOTHCS 31 IMITYYHUM IHTEIEKTOM. CIAMHHUN TUTIOC, SIKUH 0adarh JesiKi
MICUXOJIOTH BiJ] BIPOBA/DKEHHS IITYYHOTO 1HTENEKTY, 1€ Te, 0 KOHKypeHis 3 Il Moxe cripustu
NParHEHHIO PO3BUBATHUCSH, 1 YUHI HAMAraTUMyThCsl CTaBaTH e Kpamumu. OHAK HAaBITh MPHU LBOMY
ICHYy€ BeJIMKa HeOe3IeKa, 1110 BXKe B HaOIMKIOMY MailOyTHBOMY B HAIlIOMY CYCH1IBCTBI 3'IBIATHCS
JOPOCIIi JIFOIH, K1 OyIyTh, 3 OJHOTO OOKY, 13 3aHIKEHOIO CAMOOIIIHKOI0, a 3 1HIIOT0, 3aNexHi B 11
[10].

[HImIe mocmipKeHHST TOKa3aio, IO MaJieHbKi JITH BBaXKAHU, IO «PO3YMHI» KOJOHKH
HaAIMHINII, HIK JIFOH, KOJIH CIIpaBa CTOCYyBajacs BIAMOBIIEH Ha 3alMUTaHHs, 3aCHOBAaHUX Ha (DaKTax,
Hanpukian, «xrto Oy mepmum npesugentom CIIA, skuii kepyBaB aBromoOinem?» [15] Omnak
Halo11b1I, MaOyTh, HEOTHO3HAYHUN eKCIIEpUMEHT MpoBiB npodecop Hapasuan 3 [IpuHcTOHCHKOTO
yHiBepcuTeTy. HamamryBaBmm BinnmoBimHuM 4mHOM rojocoBuii iHTepdeiic manms ChatGPT, Bin
HABYHMB HOTO CITIIKYBATHCS 31 CBOEIO TPUPIYHOIO JOHBKOIO [16]. HapasHan 3a3Hauvae, 1o 4at-00T y
CBOIX BIJNOBIIAX IMITY€ CIIBYYTTS, X04a HOTO MPO 1€ CHEIiaIbHO HIXTO HE MPOCHB, a TOYHICTb
BIJIMIOBI/ICH, CY/IIYU 3 YChOTO, HE € MPOOIEMOI0, OCKIIBKY MUTAHHS TPUPIYHUX AITeH JOCUTH MPOCTI
Juts HhoTO. He3Baxkaroun Ha AESKi PU3UKHU TUITY MOXIIMBOI 3aJIE)KHOCTI UM «IIKiITTMBOT0» KOHTEHTY,
3arajiom rnpogecop NO3UTHUBHO OLIIHIOE MOIOHUI TOCBI, 3asBIISAIOUH, IO 0OMEXyBaTH f1ocTy 1o 11,
SIK 11¢ OYJI0 13 COlllaIbHUMH MEPEKaMH, He MOTPiOHO.

Opnak mnaTdopMu CoIialbHUX MEPEX OYJIM CTBOPEHI TAKUM YHHOM, 11100 TPUBEPTATH yBary
Ta yTPUMYBATH B MEPEXIi JTI0/IeH SKHAKWOBIIE, 3MYIIYIOYH TIOCTIHHO NEPEBIpSITH €KpaH Ha HasIBHICTh
OHOBJIEHb. SIK 1 MPUCTPacCTh A0 a3apTHUX IrOp UM 3aJEKHICTh BiJl HIKOTHHY, alKOTOJIO YU
HapKOTHKIB, BUKOPUCTAHHS COLIaJIbHUX MEPEX MOKE BUKIMKATH IICUXOJIOTTUHY 3ajeXHIcTh. Komu
JIOIMHA OTPUMYE JIaiiK, pernocT abo MO3UTHBHY PEakKIlilo Ha MyOJiKallilo, 1€ MOXXe CIPUYUHUTU
BUKHJI Y MO30K Jo(amiHy (XiMi4YHOT pEUOBHHU «BHHAropomu»). Te came BinOyBaeThCs IMiCIs
BUTpAIlly B IrpOBOMY aBTOMaTi ab0 BIAKYIITYBaHHS IIOKOJaay. | 4ynM Oijibllle TaKUX BUHAropoJ, THM
OUTbIIIe Yacy XOUYeThCS MPOBOJUTH B COIIAIBHUX MEpekax, HaBITh SKIIO 1€ MOYHWHAE 3aB/IaBATU
IIKOJM 1HIITMM acrieKkTaM Bamroro »xutTs [3]. 3BuuaiiHo, KO MPOTHIIA TaKild CIOKYCi € BaXKKOIO
3a/1a4€r0 HABITh VTSI IOPOCTUX JIFOJICH, ISl IITeH 11e OyJ1e HaJCKIIaTHO.

3 TOro yacy, K KiJbKa JeCSATUIIITh TOMY 3'sIBUBCS IHTEpHET 1 colialibHI Mepexi, 1 Jopocii, 1
JIITH BCE YACTIIIE CTUKAIOTHCS 3 TPYAHOIIAMU B OIIIHIII JJOCTOBIPHUX JpKepen 1Hpopmarilii. 3 mosiBOko
II curyauist yckimagaunacs e Oinbiie: skmo nouyk y Google Bumae jxepena iHpopmaii, siki
HeoOx11Ho 00poOuTH, 1100 oTpumaTH pe3yibpTaT, ChatGPT 00'eanye Ta mepepo0iisie Bce 3a Bac, TOMY
HEMOXJIMBO CKa3aTu, 3BiJKU OepeTbes iHpopmanid. Lle, y cBoro yepry, iHOAL BeJe 10 TOro, 10 AiTH
BIpATH 4aT-00Ty, HE CYMHIBAIOYKMCh y HOro ciioBax. TuM Ouibllie 1110 BiH MpeAcTaBise iHPopMaIliio B
PO3MOBHOMY CTHJIi, 0araTo B 4OMYy CXOKOMY Ha T€, SIK CIIUJIKYIOTbCS JIFOAHM, 10 MOXKE CTEPTH MEXKY
MIDK JIFOJICBKUMHU 3HAaHHSMH Ta KOHTCHTOM, 3TCHEPOBAaHMM MaiinHOK0 [12]. YV 1mpoMy BUIAIKY
BukopucTanHs [I Mmoxe cripoBokyBaTH HeOe3neuHi ekcrniepuMenTd. Hanpuknan, Oyinu BUNaaKu, KOJIU
niBuaTka-miniTku 3BepTasmcs 10 ChatGPT 3a MmeanuHuME MopajamMu Ta TUTAaHAMM JTI€TH. 3BUYAIHO,
4aT-00TH MOXYTh IIBUJKO HagaTH TaKy iH(OpMaIliio, OJHAK BOHH HE MOCHUIAIOTHCA HA OyAb-sKi
KOHKpPETHI (TUM OLIBII aBTOPUTETHI) JpKepena, a iX BIAMOBIII YacTO SIBISIOTH COOOK0 BUIAIKOBHIA
HaOip iHpopmarii 3 [nTepHery [2].

JlociakeHHsl TOKa3yIoTh, IO JITH BUKOPUCTOBYIOTH MOJI0HI CTpaTerii CyIKeHb 3 METOIO
OLIIHKM iH(opMallii, HafaHoi AK JOAbMH, TaK 1 podoTamMu. YacTo iXHI BUCHOBKU IPYHTYIOTHCS Ha
TOMY, Yd JAaBaB poOOT YM JIIOJUHA TOYHY I1H(OpMalil0 B MHHYJIOMY, Ta Ha IX CHPUMHATTI
€KCIIePTHOCTI, KOMIETEHTHOCTI JIFOAMHU YU poOoTa. TuM He MeHII, OyJI0 BUSBICHO, IO ACSKI TITH
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CXWJIBbHI CINO JOBipATH Oynb-sKiil iHpopmaii, mo HaxaeTbes I, B TO# Yac sk iHII BCE X Taku
CTaBIISATHCS 110 Hel O1TBIIT KPUTUYHO. ﬁMOBipHO, Ha IO 3/1aTHICTh BIUIMBAIOTH 0a30B1 3HAHHS JUTUHU
B IIPEIMETHIM Tamy3i (K0 BOHA AIMCHO MIOCH 3HAE PO OOTOBOPIOBAHY TEMY), @ TAKOX 11 pO3yMiHHS
TOTO, SIK MPAIfIOe TYYHUH 1HTENeKT, TooTo II-rpamotHicTh (Al literacy). JlocmimkeHHs moka3aiu,
110 JiTel HaBiTh y JOUIKUIBHOMY Billi MOXKHA HABYUTH TPAMOTHOCTI Y cpepi IITy4IHOTO 1HTEIEKTY,
110 Jornomarae iM e)eKTUBHIIIE OILIHIOBATH CHJIBbHI Ta ¢1abki ctoponu 111 [12].

HacnpaBni, me no mnosBu ChatGPT gesxi po3pOOHMKHM TMOYadd 3aMHCIIOBATHCS HaJ
CTBOPCHHSIM «IUTSYUX» IMOMIYHHUKIB, sKi O BiAmoBiganu morpedam IiTed, po3yMmind ix ¢aHTasii i
BiJITIOBIJaJH, TIPOSIBIISIFOYM €MOIIiiHI peakiii. Sk mpukiiaa MokHa HaBeCcTH Komnanio SoapBox Labs,
sKa BHUKOpHUCTalla JJisi CTBOPEHHS MOMIYHMKA i AiTei 2-12 pokiB THUCAYl TOAUH AUTAYOTO
MOBJICHHSI, 3aITFICAHOTO B TaJaciMBiii 0OCTAHOBIII — HA KyXHSX, Y KJIacax Ta MallIMHAX y AITeH pi3HOTO
BiKy 31 192 kpaiH [5].

Ile, y cBOr 4epry, HOPYIIy€e BaKIMBI MATAHHS KOHQIICHIIIHHOCTI Ta OE3MEKU JaHUX, TaK
caMmo sIK 1 1HIIIA IPaKTHKa 3acTocyBaHHA I, moB's3aHa 3 ITbMU — «PO3yMHI» KaMepH y LIKOJIAX, sIKi
3a JJOMTOMOTOI0 IITYYHOTO iHTEJIEKTY MOXYTh BiZCTIIKOBYBaTH MOPYIICHHS MOBEIIHKY (HAIPUKJIIA,
Oir KopuIOpaMu), a TAKOXK 3a JOMOMOT00 TICUXOEMOILIIIHOT0 aHalli3y BU3HAYATH, YU HE MOTPEOYIOTh
JUTHU TOTIOMOTH BYMTEIIS YU MeuKa. J{71s boro HeipOHHA Mepeka IMOPIBHIOE 3aKIaIeH] B HEl eMoIlii
3 goTo/Bieo maHUMH Ta aHaii3ye BCi (aKkTOpu — BiJ OLIHOK LIKOJsSpa A0 Horo moseniHku. Kpim
1poro, 11 3moke BifcTexKyBaTH pi3Hi (PaKTOPH, 110 BILTUBAIOTH HA 37J0POB's, HAPHUKIIA, MTiABUILEHY
TEMIEpaTypy MOBITPs B KIACi, 32 JOMOMOIOI0 CIeialbHUX AaTYuKiB. [ 300py Ta 00poOKHU Takoro
pony indopmariii Mae OyTH BiIMOBIAHHIA JO3BLI, POTE JAIEKO HE (HaKT, MO0 KOMITaHIsSI-pPO3POOHHK
Horo 3anmuTyBaTUME, a AKIIO i Oy/e, TO OTpUMae peanbHy, a He (hopMalbHy 3roAy (TOYHO TaK camo,
SK TPH BXOJI HA CAaT MOXHA MIATBEPIUTH M0 TOOI € 18 pokiB, MPOCTO HATHCHYBIIN MOTPIOHY
KHOMKY). [Ipy IbOMy BUHHKA€ TaKOK HU3KA 1HIIUX MUTAHb:

e Illo pobutu, KO, IPUITYCTUMO, TAKUI JO3BLT HE Ja€ OJUH 13 Y4HIB (a00 Horo GaThKu) y
kiaci/mkoini? Yu Oyie MOKIMBICTD 30MpaTH JIaHi Ta MPOBOAWTH aHAJIITHKY BHOIPKOBO?

e Sk Oyne BUKOpUCTaHO Wi JMaHi Hagami? XTO, a HAWUTOJIOBHIIE, U SIKUX IIJIEH 3MOXe
MpoaHali3yBaTH, MO CYTi, BCi NCUXO(I310J0TiYHI ACHEKTH TOPOCIIIIaHHS IUTHHHU Ta
MEePETBOPEHHS 11 Ha MIJIITKA, a MOTIM 1 Ha JJOPOCITY JIFOIUHY?

e [lIBuamie 3a Bce, MUTaHHS 3roJM Ha 0OpOOKY AaHUX 3aJaBaTUMEThCS OaThbKam, MPOTE IO
pOOUTH, SIKIIO IPOTH Oy/ie caMa TUTHHA?

3a JaHUMU JOCIIPKEHbB, TOBCIO/IHE BIPOBA/KEHHS €JIEKTPOHHUX Ta, BIAMOBIIHO, IU(POBUX
pecypciB Ha/lae MepeBayKHO HETaTUBHUMA BIUTMB HA IICUXOJIOTIYHHUHA CTaH yYHIB!

1. OcobucTicHUI pO3BUTOK B YMOBAX ILU(PPOBOrO MPOCTOPY 13 3aCTOCYBAHHSAM €JIEKTPOHHHUX
MoOJIeiel BIIPI3HAETHCS OCOOTUBOIO CIIEM(IKOI0 MOPIBHIHO 3 MEpe0iroM TaHOTO MPOIIECY B
OCBITHBOMY CEpPEJIOBHIL, 1€ MEePUIOPSAHE MiICIe BIIBOIUTHCSA O€3MOCEpenHiil, «KUBIIH»
B3a€MOJII 13 CHOPaBXHIMU NIpeaMeTaMH. YUHI MOPUHAIOTh y CHUTYyalllo, /1€ BiAOYyBa€ThCs
JIOMIHYBaHHSl ~palliOHAJIbHOI CKJIAJ0BOi OCOOMCTOCTI HaJ €MOLISMH, M0 CIpHsE
Tpanchopmartii nporecy kKomyHikamii. [lomiOHI 3MiHM HEPIAKO MPHU3BOIATH /10 TaKHX
HACJIAKIB: 301IbIIEHHS YKcIa KOHQIIIKTIB Ha PI3HUX PIBHIX B3a€MOJII1; CXHMIIBHICTD JIIOJMHU
cnpuiiMaty MOAll, 1O BiAOYBaIOThCS B 1i JKUTTI, SIK pe3ynbTar 30iry OOCTaBHH, IO HE
HiAJTA€EThCS. KOHTPOJTIO, TOOTO NMepeBaXkaHHs €KCTEPHAIBHOTO JIOKYCY KOHTPOJIIO; HeOaxaHHs
OpaTtu Ha cebe BIANOBIIAIBHICTD Ta TOKJIAAaTH 3yCHIIb JJIsl BUPILIEHHS CKPYTHUX CUTYaIlil;
3aCTOCYBaHHA IIUPOKOTO CIEKTPY 3aXMCHUX IICUXOJIOTIYHMX MEXaHI3MiB; HHU3bKa
aJIalTOBAHICTh /10 30BHIIIHBOI AIMCHOCTI; HEMPUHHATTS ce0e Ta OTOUYIOUHX JIFOIEH.

2. HemoxuBiCTh, IO MPOBOKYETHCS OCOOJMBOCTSAMHU €JIEKTPOHHUX (OpM HaBUAHHS,
0e3nocepeIHbO 1 TPUPOJHUM YHHOM BUPIIIYBAaTH 3aBIaHHS, SK1 BIAMOBIJAIOTH BIKOBOMY
eTary po3BUTKY, a TAKOXK MMOTpeda y BCTAHOBJIEHHI OJU3bKUX JIOBIPYMX BITHOCHH BUKJIMKA€E
y TUX, XTO HaBYAE€THCS, TIMOMHHUM BHYTPIILIHINA KOHQITIKT.

3. 3ByXEHHs TOJSA [JiSUIBHOCTI CHpHUsi€ KOHLEHTpalii 3amuTiB Ta 1HTEPECiB HaBKOJIO
1H(hOpMaLIHHO-KOMYHIKALIIMHUX TEXHOJIOT1H, 1110 HEraTUBHO MO3HAYAETHCS HA €MOLIIITHOMY
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T y4HIB. Y 3B'S3Ky 3 IUM Yy Y4YHIB BHUSIBJISETHCS CKOPOUCHHS MOMJIMBOCTEH BUPAXKCHHS
BJIACHUX E€MOIIil Ta 3BY)KCHHSI CAMOBUPAKCHHS Y 3arajbHOMY BUTIIsAI. Lle mopomkye Benmuki
po0JIeMH y TIPOLIEC] CIIIKYBAaHHS Ta HAJIAroKEHHS MIXKOCOOMCTICHUX KOHTAKTIB, a TAKOXK
CHpUsi€ BKOPIHEHHIO MOYYTTS HE3aI0BOJICHOCTI BIIACHUM JKUTTSIM.

IIpu npoMy cTaBJIEHHS AOPOCIUX Ta JIITEH 10 LbOro MUTaHHSA KapAWHAJIBHO BIJIPI3HIETHCS
[14]. Maiike 70% BuuTeNiB Ta KEPIBHUKIB HIKUI/paiioHIB 3 595 omuTyBaHHX BBaXKaroTh, o Il
HEraTHBHO BIUIMHE Ha MIKOJISAPIB Y HaOmkyi 10 pokiB, 1 auiie 61au3bko 15% BipaTh y Te, I10 TaKui
BIUIUB OyJe MO3UTHUBHUM. Y TOH ke uac, yBepTh 3 1056 mimmiTKiB, sIKI NPUHAHSIIM y4yacTh B
ONUTYBAHHI, BBaXKarOTh, 110 BIUIMB Il Ha iXHe mcuxiuHe 370poB's Ta OJArONONMy4dsl MPOTATOM
HACTYITHOTO JCCSTHIITTS Oy/ie TO3UTUBHUM, a Maibke TpeTuHa (31%) onmuTaHUX MPUITYCKAIOTh, 110
II BruiMHE HA HUX HEraTUBHO.

Jleski eKcIepTd CTBEPUKYIOTh, IIO BIAMIHHICTH B OLIHII mNoTeHIiiHOro BrmmBy Il y
IIKOJISIPIB Ta BUKJIAJAYiB MOSCHIOETHCS PI3HUIICIO MTOKOIIHB: MOJIOI JIFOAM MPOTATOM BCi€l icTopii
3aBXAu Oyau OLTbIIe CXMIIBHI OyTH MEPUIONPOXiTHUKAMH Ta CHTY31aCTaMH, LIKaBJITYHCh HOBHUMHU
TEXHOJIOT1IMHU Ta MOKJIMBOCTSIMU YJOCKOHAJIUTH iCHYI0U1 niaxoau. [Tpu nboMy BakIMBO MaM'sTaTH,
110 3 TOYKH 30py TeOpii MOKOJIIHF MOBa B TAHOMY BUIIAJIKY i€ TIEPEBAYKHO PO «aTb(m», HAPOKEHI
micist 2010 poky (i siKkuM, BiIMOBIAHO, HA JaHU MOMEHT He Oinmbine 14-15 poki). [IpencraBHuku
[[LOTO TIOKOJIIHHS BiJPI3HSAIOTHCSA JIOOOBTO 70 Iirop 1 TEXHOJOTIH, a TaKOXX HEBMIHHSM JIOBTO
30cepe/KyBaTucs Ha ogHoMy murtaHHi [17]. Tomy, 30kpema, y MiJUTTKIB, SIKI KHBYTh ChOTOHI,
nepcnekTrBa BIUMBY Il Ha mcuxiyHe 3M0pOB'S MIBUALIE 32 BCE OUIBII ONTHMICTUYHA, OCKIJIBKU
1u(pPOB1 TEXHOJOTI] B LIJIOMY Ta IITYYHHH 1HTEIEKT 30KpeMa CYNpPOBOKYBAIU iX BCE KHUTTS, BiJ
camMoro Hapo/pKeHHS. TOX HUHINIHIA PO3BHTOK HEHPOHHHX MEpEeX MOXe OyTH sl HUX JIHIIE
YEProBHM €TaroM IPOrpecy, MPUPOIHOro po3BUTKy [14].

[Ile 6impII 3BUMHUMH 10 HOBUX TEXHOJIOTIH OyAyTh MpPEACTAaBHUKU HACTYIHOTO 3a Albda
MOKOJIIHHS, HapOJKEH1, 3a JesKuMU JaHuMH, Bxke micias 2020 poky. CrodaTky BBaXKauocs, IO
HACTYITHE 3a «ab(ami» MOKOIIHHS 3'SBUThCA michs 2025-ro poky, mpoTe, CyIs4d 3 yChOro, IIe
cTajocs Tpoxu padime. Ha chorojHimHid JeHb NOKM IO HE ICHY€ €IMHOI JyMKH HpO Te, SK
Ha3UBAaTUMYTh IHUX JIt01ei: TOKOMHHS C, a00 «KOpOHIaIN, 110 HAPOAMIIUCS Ta/a00 BUPOCIIH i Yac
naHzemMii KopoHaBipycy; MokoJiHHs B («6era»), ToOTO HacTymHe micis «anbday; mokomaiHHsa W,
«21a011 10», TOOTO «aBa TeOE», OCKIIbKU Bl HApOJKEHHS WOTO MPEJCTaBHUKH XKUTUMYTh y JBOX
cBiTax, (i3uuHOMY 1 HM(ppPOBOMY, HE Oayaud MK HUMHU ICTOTHOI Pi3HMII 1 JIETKO MEPeXoisuu 3
onHOro B 1HIMI. OHAK HE BUKIUKAE CYMHIBIB, 1110, siIka O Ha3Ba He MpMXKUiIacs, Il IITH (K1 BKe
3apa3 aKTMBHO OCBOIOIOTH JIOUIKUIBHY Nporpamy, a Jesiki 3 HUX, MOXKJIMBO, BK€ HACTYITHOTO POKY
HiAYTh 10 MEpUIOro Kiacy) crpuitmMaroTh Il sik 1mock 3BUYHE Ta MPUPOAHE — HEBIA'€MHY YaCTUHY
IXHBOI'O KUTTH.

[Ipn npoMy, 3a JaHUMHU PI3HUX JOCHKEHb (y TOMY 4YMCI MPOBEIEHUX 3rajlaHOl0 BKe
MDKHapoAHOIO oprasizaiieto PISA), moka3HUKH MIKOIAPIB y TAKUX OCHOBOIIOJIOKHUX JAUCIUILTIHAX,
SK, HANpHUKIAJ, MaTeMaTHKa UM YUTAHHS, HEYXWIBHO 3HMKYIOTHCS B 0ararbox KpaiHax CBITY.
[Tpryomy ineTbest He JinIIe Mpo 3HAHHS Ta BMIHHSA K Taki, ajle Mpo 3/1aTHICTh 3aCTOCOBYBATH iX Y
MOBCSAK/IEHHOMY JKHTTI JUIsl TOCATHEHHS pi3HUX 1ineit [18]. Tpennu Ha magiHHs pe3ynbTaTiB yuHIB
npunanawTs Ha 2012 pik, sSKuil AesKi BUSHI BKe Ha3UBAIOTh «POKOM BMHAXO/AY CYyYacHOT'O CBITY»,
«BY3JIOBOIO TOUKOI0» PO3BUTKY IMBLII3aIi1, TOOTO MOMEHTOM 4acy, B AKHil B110yJ10cs 6€3114 pi3HUX
NEepeIOMHHX MOiH, SKi BIVIMHYJIM Ha T€, B IKOMY HAIIpsIMi 1oYajia po3BUBATHUCS HAllla [IMBLII3ALlIS.
[Tpruomy 11e HE 0OMEXKY€ETbCS 3HMKEHHSIM YCIIIITHOCTI, TaKOK MounHatouu 3 2012 poky miniTKI
CTaJIM: YacTillleé BiUyBaTH JENpEeciio, SK HACHiJO0K, MOoOuIbIIano cnpold camoryOcTBa; Oiiblue
CTpaXJIaTH BiJl HEJAOCUITAHHS; BIIIyBaTH MEHIIE BIIEBHEHOCTI y CBOIX CHJIaX; BIAYyBaTH OlIbIIE
HE3aJJ0BOJICHOCTI K 110710 cebe, Tak 1 BiJl )KUTTS 3arajioM; Biq4yBaTH cede Aenaiai CaMOTHININMH, 1
tak maii [19].

IIcuxomnoriuHi 3MiHU CYMPOBOKYBaIMCA KyJIbTypHUMU: micist 2012 poky cama KynbTypa
cTasia OUIbLI IPUTHIYEHOIO, TPUBOXKHOIO Ta 3JI0H0, 110 BUSBJISUIOCS, HANPUKIIAL, Y TOMY, SKi MICHI
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CTaBaJM HalmomysspHiKMMU. Bee 1e AOCHiTHUKU MOB'SI3YIOTH 3 THM, IO Y Oaratbox KpaiHax
MIUTITKA MacOBO 3aMiCTh 3BHYalHUX MOOUIBHHX TeNe(POHIB MOYAIN KOPUCTYBATHUCS cCMapTHOHAMHU.

[lepenbauntu MOSIBY TaKMX «BY3JIOBHUX TOYOK» yKpaill CKIaJHO, OiibIle TOTO, IX CKJIAIHO
BUSIBUTH HeE JIMILE y MallOyTHbOMY, a il HaBITh y MUHYJIOMY. IIpoTe nesiki eKcrepTH BxkKe ChOrOJHI
TOBOPSATH PO T€, 10 HACTYITHUM TaKUM NEPEJIOMHIM MOMEHTOM B icTopii itoacTsa micis 2012 poky
crane 2023-ii pik.

B ocHOBHOMY IITY4YHHH 1HTENEKT BHKOPHCTOBYETHCS UIS TOTO, 1100 3 HOTo JOMOMOTOIO
IykKaTu iHopmMallito, i e Mo)KHa PO3TJIAIaTH K 00JacTh, B siKii Il MOXe MaTh MO3UTUBHUI BILIWB
Ha JITel, TOMY IO BiH 3HaYHO PO3IIUPUB JJIsI HUX JOCTYI 10 3HaHb Ta iHpopmauii. OqHak BKpait
BaXUIMBUM (AKTOPOM € Te€, L0 MITH TMOBHHHI MaTH MOXJIMBICTb KPUTUYHO B3a€EMOJIATH 3
iH(pOpMaLIi€l0 Ta YCBIIOMIIIOBATH MOTEHLIWHY MOXJIMBICTh HEBIPHOI UM HENpaBIuBOi iH(opMmariii.
Towmy iHIIIOI0 HEOE3MEeKOI0, Ky 4acTo MOB'A3yI0Th 3 11, € Tak 3BaHi «aundenkn» - Bigeo-, ayaio- abo
¢doromarepianm, ctBopeHi 3a roromoroto I, Ha IKuX MOXyTh OyTH 300paKeH1 HEICHY 0l Y1 peajibHi
monu 0e3 IXHpOro 103Boiy. KpiM Toro, mo me sBuie HeOe3ledHe came Mo coOi, BOHO TaKOX
MOCHITIOE HeOe3MeKy KiOepOysiHTy, a 3 PO3BUTKOM TEXHOJOTIH I mpobiema, HaliMOBIpHIIIe,
noripmuTbes [14].

binpme Toro, akTHBHI «Tpoiyi» (JIIOOH, SIKi 3aliMAlOTHCS COLIATBHOIO MPOBOKAIIEI0 YU
3HYIAHHSIMH, N1EPEBAXKHO B [HTEpHETI) He JIMILEe MepeciIilyBaTUMYTh JIFOJICH, a i 3amyyarh A0 Li€l
crpasu 11iti apmii 60TiB. 1lle B 2023 pomi 3'sBritacs iHpopmallis mpo Te, Mo JOCTITHUKN BUSIBIIN B
comianpHit Mepexi X uuty «IIBK comioxakinry». Fox8 — kmactrep 3 1140 migpobneHux
AITOPUTMIUHUX TEPCOH, IO TpamiooTh Ha ocHoBi ChatGPT. Ixmi cmimemi nmii BKIIOYAOTH
nyOJikalito 300pakeHb, B3aEMHY MIAMUCKY HA aKayHTH JUIS CTBOPEHHS HIUTFHOI COI[iaIbHOT Mepexi
Ta aKTHBHY B3a€MOJIII0 33 JONMOMOTOO BiAIMOBi/IEH Ta peTBiTiB. BueHi mpumyckarTh, I0 00IIKOBI
3anmucd B OOTHETI CHIAYIOTh €IUHIA WMOBIPHICHIM Moneni, fka BU3HA4Ya€ iX THUIM 1 YacTOTY
aktuBHOCTI. ChatGPT BUKOPUCTOBYETHCS Uil CTBOPEHHS JIOAMHOMOAIOHOTO KOHTEHTY Y BHIIISIL
OpUTIHAJIIBHUX TBITIB a00 BIAMOBiJEH IHIIMM akKayHTaM, I@pd L[bOMY MOBHa MOJEJb
NPOIHCTPYKTOBaHA T€HEPYBATH PI3HUN KOHTEHT, BKIIFOYAIOYM HETAaTHBHI Ta IIKIUTMBI KOMEHTapi.
JlociKeHHs TaKOXK IT0Ka3y€e CKOOPAMHOBaHE BUKOPUCTAHHS IIUX OOTIB JUIsl HPOCYBaHHSI CYMHIBHUX
BeO-cauitis [20].

Bce 11e Moyke nmpu3BECTH A0 Pi3HUX HACHIAKIB. 3 OJHOr0 OOKY, MiJUTITKM MOXXYTh IepecTaTi
JOBIpATH 1H(OpMaIlii, Ky oJepKytoTh. Konu BoHU 0ayaTh, HACKUIBKU JIETKO CTBOPHUTH AUM(ENK
(MOXXJIMBO, HaBiTh CHpPOOYBAaBIIM 3pOOMTH L€ CAMOCTIHHO), 1 MPU IbOMY BIJCYTHINl MexaHi3M
MepPEBIPKU JOCTOBIPHOCTI, JOBOJIUTHCS CTaBUTHU IMiJI CYMHIB aOCOJIFOTHO BCE€, BMUKAIOYH PEXKHUM
«Kpallle He TIOBIPUTH, HIK MOBIpUTH». [IpoTe Takuii mixiJy BUMarae 3Ha4HOr0 PO3BUTKY KPUTHUYHOTO
MUCIICHHSI, SIKE, Ha JKab, y 0araTbOX JIIOJEH HEIOCTaTHHO PO3BHHEHE, OCOOIHMBO B IUTIYOMY Ta
HiJIITKOBOMY Billi, 30KpeMa TOMY, 1110 Y HaBYAJIbHUX 3aKJIaJiaX He NPUAUIAETbCS TOCTaTHBOI yBaru
1i{ Ta HIIUM «M'SKUM» HaBU4YKaM. Tomy, 3 1HIIOro OOKy, iCHye HeOe3Ieka, M0 MKOoJIsApl OyayTh
HE37aTHI MPOTHCTOSTH COLIAaJbHUM MEpekaM UM HaBiTh B LIJIOMy €KpaHaM CBOiX CMapT(OHiB,
KOMIT'FOTEPIB, TEJIEB130piB TOIIO. JlesiKi 3 HUX YK€ CbOTOJIHI 3HAYHY YaCTHHY Yacy «IPHUKIICEHD JI0
CBOIX Ta/KETIB — HACTUIbKM €(EeKTUBHI aJrOpUTMH COLIaJbHUX Mepex. Hampukiazn, maiixe
nosioBuHa kopuctyBauiB TikTok — e nitu 10 18 pokiB, a KOHTEHT JaHOI MEPEX1 HE € HI HABYAJIbHUM,
Hi pO3BUBAIOYMM. AJITOPUTMHU OyAyTh Bce OUIbII BUTOHYEHHMH Y CBOIX JisIX 13 3aXOIUICHHS Ta
yTpUMaHHSl yBaru KOPUCTYBauiB, 5K, BIJIMOBIAHO, Bce Ouiblle 4Yacy OyAyTh NPOBOAUTH Y
BIpTyaJIbHOMY CBITi Ta BC€ CKJIaJIHIIIE OPIEHTYBATHCA y CBITI peatbHOMY. OHUM 3 (paKTOpPiB MOXKeE
OyTH Te, 1m0 ix B3aemoist 3 60oTamMu Oyje OUIBI SICKPABOIO 1 HACHYEHOIO B TTOPIBHSAHHI, CKaXIMO, 31
CIIUIKYBaHHSM 3 CIM'€10 — IPUHANMHI iM Tak 31aBaTuMeThes [14].

Tum HE MeHII, ACsSKI TOCHIDKEHHS IOKa3ylTh, IO MITH JIHCHO MOXYTh €(EKTHBHO
HaBuaTucs y II, skmo BiH po3poOieHuil 3 ypaxyBaHHSAM NPHHLUMIIB HaBuaHHs. Hampuknax, II-
KOMITAHBHOHH, SIKi CTaBJATH MUTAHHS IIiJ] YaC TaKUX 3aHSATh, K YUTAHHS, MOXYTh MOKPAIIATH
PO3YyMiHHS JiTel Ta iX CJIOBHUKOBHI 3arac. BoHM iIMITYIOTh posib OaThKiB, YUTAIOUH ICTOPIIO BroJIoC
1 pobustun may3u, o0 cnmratu: «I1{o BiguyBae meit mepconax?», abo « Sk TH TyMmaerl, 1o CTaHEThCs
nani?». BucmyxaBmim BiMOBiAb, IITYYHUN IHTENEKT J1a€ HEBENHKI MiAKa3KW, SIK 1€ 3pOoOuB Ou

77



BUXOBATENb YU BUMTEIb, IKOM AUTHHI Oyna noTpiOHa normomora. Jlity, siki Opaiy yyacTb y TaKOMY
THUIT IHTepaKTUBHOTO Jiasory 3 I, kpaie po3yMisu icTopii Ta BIi3HaBaIH OiJIbIIE CIIiB y MTOPIBHSAHHI
3 TUMH, XTO IIPOCTO IMACUBHO CIIyXaB. A B JISIKUX BUMA/IKaX pe3yJIbTaT HaBUYaHHS BiJ B3aemoxii 3 11
OyJIM HaBITH CITIBCTaBHI 3 Pe3yJIbTaTaMH Bij JOJChKOi B3aemoii. OnHak, xoua Il Moxke iMiTyBaTH
JesiKi OCBITHI B3a€MOJIil, BiH HE 3JaTHUN TMOBHICTIO BiJTBOPUTH OINbII TTUOOKE 3aTydyeHHS Ta
noOy/I0By BIJIHOCHH, SIKI BHHUKAIOTh TPU JIOACHKIM B3aeMOii, OCOOJMBO KOJIU HAETHCS PO
HACTYIHI MUTaHHS 200 NepcoHaNi30BaHi 0eciiy, AKi BaXXIIMBI J11 MOBHOTO Ta COLIaJIbHOTO PO3BUTKY
niteit [12].

B excnepumenri, cnpsimoBaHoMmy Ha Bu3HaueHHS edektuBHOcTi ChatGPT y BuBuUeHHI
aHIJIMcbKoi MOBH, OyJIO BUSBIJIEHO, L0 BiH 3arajoM YCIHILIHO CIPABISETHCSA 3 I'PaMATUYHHUMU Ta
JIEKCUYHUMH BIIPAaBaMM, MOXE JOTIOMOTITH LIKOJSpaM MOYATKOBOTO PIBHSA 3 YHTAaHHSM, aje y
3aBJaHHAX Ul YYHIB CTapIIOi IIKOJIM 4acTo Ipuiryckaerbest noMuiok. Ilo crocyersest poneTuky,
TO 4aT-00T MOXE JTOTIOMOITH 3 TPAHCKPHIILII€I0, ajie 3 OUIBII CKIIaIHUMHU 3aBIaHHSAMU, HAIIPUKIIA] HA
IpyIyBaHHs 3BYKiB, BIH IIOKH 1110 CIIPABJIAETHCS MEHII €(EKTUBHO.

[{omo 3ragyBaHoi B)XKe MaTEMaTHKH, TO TYT CHTYallist 30BCiM iHmIa. HoBa Mozenb mTy4HOro
inTenekty Bix OpenAl, ol, oTpumana ineanbHUIl pe3yibTaT y ICIUTI 3 MaTeMaTUKH. J(ocmiqHUKN
HaJIaJId 3aBJIaHHS, K1 BUITYyCKHUKH cepenHixX mKin [ommanaii 31a10Th 1J1s BCTYITy A0 YHIBEPCUTETY,
Mozeni ol preview (Iile HaBiTh HE «ITOBHa» MOJEIb), ska 32 10 XBUJIMH NPaBUIHLHO BUPIIIAIIA BCi
3aBjaHHs, HaOpaBmm 76 OaniB i3 76. s nopiBHsHHSA, e 24 y4Hi 13 16414 (ToGTO OIM3BKO
0,15%), siki cKJIagany nei iCuT, TaKoK OTPUMAIH MakcuManbHuid Oar [10].

3 oamHoro OoOky, ©Oararo XTO HaTxHeHHMH TUM, 1m0 Il Moxe 3poOMTH HaBYAHHS
MEPCOHATI30BAHUM Ta JOMOMOITH YYHSM PO3BUHYTH HAaBUYKH, HEOOXiTHI IJIsl TOro, 1100 OyTH
YCHIITHAM y CyYacHHX yMOBax (SIKi Termep BKJIIOYAIOTh 1 BMIHHSA B3a€MOIISATH 31 IITYYHHM
1HTENIEeKTOM). 3 1HIIOro OOKY, ICHYIOTh TOOOIOBAHHS 3 MPUBOAY MEPCIIEKTUB IILOTO «MOKOMiHHS [y,
iX 3MaTHOCTI JMIHCHO 3HAXOJWTH BIAMOBIAI 1 BUMTHCS caMocTiiiHO [12]. IcHYIOTH JOCHTH Baromi
JIOKa3M TOTrO, IO AOCTYH 10 IHCTpyMeHTIB Il Mo)ke MOKpamuTH BHUKOHAHHS 3aBIaHb YYHSIMH,
HANpUKIa, P HamHMCcaHHI ece yuHi, siki BUkopuctoByBain ChatGPT B sikocTi momiuHUKa, SIK
IPaBUJIO, UCAIM OUIbII sAKiCHI ece. OnHAK MUTaHHA TYT Y TOMY, Y4 MOXYTh Y4HI, SIK 1 paHille,
MYCATHU AKICHIII €ce, KOJIU BOHU OuIbIe He MatoTh Aoctymy 10 ChatGPT.

[11o6 nepeBipuTH 1€, MpOBEIN HACTYMHUN ekcriepuMeHT. bauspko 1000 yuniB 9-11 kiaciB B
OJIHIA TypelbKil IIKOJl B paMKax BHUBYEHHS MaTeMaTUKU OyiM MOJAUIEHI Ha TpU TPYIHU: OJHI
BUKOpHCTOBYBasU 3BUYaiiHy Bepcito ChatGPT (tak 3Bana GPT Base), inmi — GPT Tutor, sikuii 6yB
3amporpaMOBaHMi 1aBaTH OJHY a00 KiJbKa MPaBUJIBHUX IMIKA30K, aje He cami BIAMOBIII, a TPETS
(KOHTpOJIbHA) IpyTa MpalfoBaia gk 3aBxau, 6e3 1. Pe3ynbTatn exciepuMeHTy nokasaii, 1110 MpH
BUpIIIEHHI NpakTHYHUX MaTemMaTuHuX 3aBadb GPT Base Ta GPT Tutor 3011b11y10Th €()€KTHBHICTD
Ha 48% Ta 127% BiANOBIAHO NOPIBHAHO 3 KOHTPOJIBHOIO Ipynoro. OHaK 101aTKOBO 0YJI0 BUSBIIEHO,
II0 Ha ICNHTI, MiJ Yac SIKOrO HE MO)XHa OyJI0 KOPHCTYBaTHCSl €IEKTPOHHUMH IOMIYHUKAMU,
pe3yJbTaTu y4HIB 3 MepuIoi rpynu, siki BukopuctoByBanu GPT Base, BusiBuiucs Ha 17% ripmumu,
HI)XK Y TUX, XTO BXOJIUB JIO KOHTPOJILHOI TpyIH Ta He KopucTyBaBcs 1l Bech uac HaBuanHs. [1pu npomy
pe3yabTaTu rpynH, mo BukopucroyBana GPT Tutor, craTucTu4HO Maiike He BIIPI3HINCS BiJl THX,
XTO BUPIIIYBaB Bce CaMOCTIHO. TakuMm unHOM, MU 0a4MMO, 1110 X04a MOJ110H1 IHCTPYMEHTH MOXKYTh
CYTTEBO MOKPAIIUTH MPOAYKTUBHICT JIIOAUHM 3a HAsBHOCTI A0oCTymy 10 II-iHCTpyMeHTiB, BOHHU
TaKOXX MOXYTh TOTIPIIUTH JIIOJICBKE HaBUYaHHS (OCOOJMBO 3a BIJICYTHOCTI BIAMOBIIHHMX 3aXO/IiB
0e3meku), 10 MOXE MaTd JIOBIOCTPOKOBI HACHIJIKU JJIsl MPOAYKTUBHOCTI JoauHu. Kpim Toro,
nocminauku BusBuid, mo GPT Base maBaB mpaBuiibHY BIATIOBIIL B CepeAHBOMY TUIBKH B 51%
BUIAJIKIB: BiH MPUIYCKABCA JIOTIYHUX MOMHIOK y 42% BUMAKiB 1 apUPMETHUHUX MTOMUIIOK y 8%
Bumnazkis. [Ipu mpomy, 3Bakaoun Ha Bce, HaBiTh MoaudikoBaHa Bepcisi ChatGPT ne cuiabHO
MOKpAIIly€e CUTYAIlil0, OCKIJIBKM OUIBINICTh YYHIB Hamaramucs npocto orpumartd Bia II rorosi
BIJIMOBIJIi, HE PO3BUBAIOYH NP IbOMY BiacHi HaBuuku [11].

TakuMm 4YMHOM, HE3BaKalOUYM HAa HHU3KY MEpeBar MOBCIOJHOTO 3aCTOCYBAHHS IITYYHOTO
IHTEJIEKTY B TMPAKTULl MIKUIbHOI Ta JOLIKUIBHOI OCBITH, TaKMX SK MOJIMBICTH 3a0€3MEeUnTH
1HAMBI Ty aJTbHUN MIX1/1 A0 HaBYaHHS a00 BIPOBAKEHHSI CUCTEM IMPOKTOPHHTY, 1€ TAKOXK HETaTHBHO
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BIIMBAE HE TIJTBKU HA PE3yJbTaTH HABYAHHSA, a ¥ HA 3/IaTHICTH JITEH HABUATHCS, a TAKOX Ha iX
PO3BUTOK Ta 0JIaronoryyqus.

BucnoBku. Koxxna HoBalliss — Bijx TenebadeHHs A0 COLaIbHUX MEpexX — Hece B co0i K
nepeBary, Tak 1 HeJIoJiKH. 3BUYaiiHO, caMa o co01 TEXHOJIOTIS HE € aH1 XOPOIIIO0, aHi MMOTaHO0, BCS
CIIpaBa B TOMY, XTO 1 IKUM YHHOM i1 BAKOPHUCTOBYE — 1 B MEPIILYy YEPry T€, Y1 BUKOPHUCTOBYE JIFOIHHA
il yCBimOMIIEHO, a00 X 111 TEXHOJIOTIS MIAMOPSAIKOBYE 1 MOYMHAE BUKOPUCTOBYBATH 1i camy. | Xoua
MH MOXXEMO TepeAdauuTh AesKi 3 MUX e(eKTiB, IHIMMUM MOTpiOHI poku, mo0 BusBUTHCA. ToMmy,
BPaxOBYIOUM TIIOJBIHY MPHUPOLY TEXHOJOTIH, HenmepeadadeHi HACIHIAKM Ta CKJIAJIHICTh
MPOTHO3YBAHHS TPAEKTOPIi IXHHOTO BIUIMBY HABITh CAMHUMH PO3POOHHKAMH, BAKIMBO HABUUTHUCS
nepeadavaTi Ta yCyBaTH MOTEHINIMHI HEraTUBHI HACIIIKK y MIPY TOTO, SIK HOBl IHCTPYMEHTH IIUPOKO
BIIPOBAKYIOTHCSI Y HAIlIe TTOBCSIKICHHE KUTTSI.

I[Ipu mpomy nayxke mnomupeHe (1 aKTUBHO HaB'si3yBaHE) y CYYacCHOMY CBITI SIBHIIE
Oarato3agayHoOCTi Oe3mocepeHbO IOB'S3aHE 3 MIJBUINECHOIO TPUBOXKHICTIO, IMIYJIHCHBHICTIO,
O3HAaKaMU JICTIPECUBHOIO PO3JaJy Ta HEBPOTH3MOM 3 XapaKTEPHOI0 €MOLIHHOK HeCTaOUIbHICTIO,
BIJICYTHICTIO CaMOIIOBary, a iHO/i 1 BEreTaTUBHUMHU PO3JIaJlaMH. 3 bOTO BUILIUBAE, IO JiSUIBHOCTD
Ha yMOBax 0araTto3aJaqHocTi (3a3BUYail 3 METOIO MiJBUIICHHS €(EeKTUBHOCTI Ta PE3yIbTaTUBHOCTI)
BelE /IO TOTIPIIEHHS KOTHITUBHUX 310HOCTEH, 3HMXKYIOUM MPOAYKTUBHICTH (DYHKIIOHYBAaHHS
nam'sTi Ta yBaru. lle kapAMHamBHO BIAPI3HSAE MO30K JIOAMHM BiJ] OCOOJIIMBOCTEH opranizarii
U(PPOBUX TPUCTPOIB, 3MATHUX OOpOONATH 3HAYHI OOCSATH JaHUX Ta BHKOHYBAaTH Oe3mid
pi3HOMaHITHUX (YHKII OJJHOYACHO, Y 3B'S3KYy 3 YUM BUHUKAE HU3KA MIPOTUPIY:

1. Tlorpeba cycminbcTBa, 0 Oe3rnepepBHO 301IBITY€E€THCS, Y BUCOKOKBAIi(hiKOBAaHUX Kapax, 10
B3a€MOJIIOTh 3 1H(OpPMAIiHO-KOMYHIKAlIHHUMH TexXHonorisMu. lle cympoBoKyeThCs
IMIMPOKUM KOJIOM HEBHUPIINICHUX IICUXOJIOTIYHUX TMpOoOJieM, fAKi 3'SBIAIOTECA B XOJi
IHTEHCUBHOTO 3aHYPEHHsI Y4HIB Y IIU(GPOBE CEPeIOBUIIIE.

2. 30UIbIIEHHS! TEXHOJOTIYHOTO HABAHTAXKEHHS B HABUAIBHHMX 3aKJaJax 13 CYNyTHIMH HOMY
HEBUCOKMMH TIOKa3HUKaMU HaBYAJIbHOI pPe3yJbTaTUBHOCTI, 110 HETAaTUBHO BIUIMBa€E Ha
CaMOMNOYYTTS YYHIB.

3. HasBHICTH B y4YaCHMKIB OCBITHBOT'O MpoOLECY (PIKCOBaHUX YSBIEHb LIOAO J03BOJIEHOTO
00cAry, TEMIOBHX XapaKTEPUCTUK Ta IHIIMX 0COOJIIMBOCTEHN poOOTH B IMPPOBOMY IIPOCTOPI,
K1 HE BiJIMOBIAAIOTH NIHCHUM IMCUXOJIOTIYHUM TEXHOJIOTISIM, 1110 CIIPSMOBaHI Ha 3MEHIIIEHHS
HEraTUBHUX HACIIIKIB HU(POBUX MPUCTPOIB.

Konmu mu mymaemo mpo BIUIMB IIbOTO Ha JITEH, BKIMBO IMaM'sSTaTH, 0 BOHU ICHYIOTh Y
neBHIN ekocucTeMi. € 6araTo YMHHUKIB, SIKi MOXKYTb JJOTIOMOTTH YU, HaBIaKH, 3aBaJIUTH IM BUUTHUCS
Ta PO3BUBATHCS, 1 TEXHOJIOTII € Juie ogHuM 3 HuX. OJIHa i Ta cama TeseBi3iifHa mporpama MaTume
pi3Hui BIUMB Ha AiTedl. | iHoAl e 3amexaTume BiJ TOTO, YU CUIAUTH MOPST 3 JUTHHOIO YJieH CiM'T,
KUl oToMarae 3acBOIOBATH Ta PO3YMITH Te€, YOr0 HaBYaIOTh y mporpami. Tomy, SIKIIIO TOBOPUTH
PO BUKOPHUCTAHHS IITYYHOTO IHTEJEKTY Ui HaBYaHHS JiTeH, BiH Mae OyTH pO3pOOIEHHUI y TOMY
YUCII IJIs1 3a0X0UEHHSI JIFOJICHKUX 3B'sI3KIB. SIKIIO BiH HE TUTBKHM HA/A€ MIIKA3KK IITSIM, a U MiIKa3ye
OarbkaMm, 100 BOHM 3alUIIANKCS 3aTy4YeHHUMH 0 OOTOBOpPEHHS 3 iX JUTHHOIO, 1€ MiATPUMYE
PO3BUTOK MOBH Yy JIITEH 1 3MIIHIOE CIMEITHI 3B'A3KM Yepe3 CHUIbHI 3aHATTSI.

IIpoTte muTaHHs TOrO, sIKi 3MiHM BUKIMKAE Il y miTeil — y KOTHITUBHOMY, IICUXOJIOTIYHOMY,
COIIaIbHOMY Ta HaBiTh (DI3UYHOMY TUIAHAX — 3aJTUIIAETHCS MAJOJOCTIIKEHUM, a TOMY HACIIIKA
HOro 3acTOCyBaHHS BYHTENSIMH, OaThKaMH YM CaMHUMHU JIiTbMH, SIK 1 paHilie, MNPaKTUIHO
HernependavyBani. MOXIJIMBO, y MaHOyTHROMY CHUTYaIlisl 3MIHUTHCS, MPOTE€ HA CHOTOHIINIHIN JI€HD
HaJaHI MTYYHUM IHTEJIEKTOM y KOPOTKOCTPOKOBIM MEPCIEKTHBI 3PYYHOCTI THUITY 3MEHIICHHS
YaCOBUX BUTpAT Ta MIJABUIICHHS €(PEKTUBHOCTI 0arato B 4OMY HIBEIIOIOTHCSA JIOBFOCTPOKOBUMH
HaCIAKaMM Y BUIJISI fedopMallii iHTeIeKTy He JIMIIe y AiTeH, a i y JOPOCIuX JIIOJIeH, 1110 3pEIITOI0
3 BEJIMKOI0 WMOBIPHICTIO TIPHU3BENE /10 Jerpajallii AesIKUX KOTHITUBHUX JIFOJACHKUX (PYHKITH 1, 5K
HacioK, 3anexHocTi Bix LI, skomy i pyHkii Oynu nepenaxi.
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3ACTOCYBAHHS IU®Y3HUX MOJIEJEN 1O BUPIIIEHHS 3AJTAY SUPER-
RESOLUTION

Anomauin: Poboma npuceauena 3acmocy8aHHio OugysHux mooeneu Ois SupiuleHHs 3a0a4i NiOSUUeHHS
PO30inbHOI 30amuocmi 300padicens (super-resolution), Axa € OOHI€EN 3 KIOUOBUX NPOOIeM KOMN TOMEPHO20 30pY.
Pozenanymo npunyunu pobomu ougysnux mooeneil, 3aCHOBAHUX HA 080X 83AEMON08 A3AHUX NPOYECAX. O00ABAHHS ULYMY
(forward process) ma 1020 nocmynogozo suoanenns (reverse process). Iloxazano, wo ougysui mooeii € yHieepcaibHUM
iHCmpymeHmom Ons Ni0GUUEHH MOYHOCIME MOHIMOPUHSY, ONMUMI3ayii cucmem aemomMamuiyHo20 po3ni3HABANHS ma
CMBOPEHHS PeaniCIUYHUX CYEHAPIig 015t MPEHYBAHb, W0 00360€ IX eeKmMUBHO BUKOPUCIIOBYEAMU 3 DISHUMU MUNAMU
OaHUX [ PO30LTbHOCMAMU, 3a0e3neuyIoUU CIAIUL PO3BUMOK MEXHONO02IN Y 2any3SX 000POHU, MEOUYUHU, NPOMUCTIOB0CHII
ma Kibepbesnexu. Bukopucmanms yux mooenei nponoHyEmoCsl K 8adCIUGUI KOMIOHEHM CYY4acHoi cmpamezii 00poOKu
BI3YANbHUX OAHUX, OPIEHMOBAHOI HA SUKIUKU PEAIbHO20 C8imy.

Knruosi cnosa: oughysni mooeni, super-resolution, nioguwyerusi po3oiibHoi 30amHocmi, Komn 1omeprull 3ip,
cmoxacmuyHi npoyecu, 2iuboKe HA8UAHHS.

Abstract: The paper is devoted to the application of diffusion models for solving the super-resolution task, which
is one of the key challenges in computer vision. The principles of diffusion models based on two interrelated processes —
noise addition (forward process) and its gradual removal (reverse process) — are discussed. It is shown that diffusion
models serve as a universal tool for enhancing monitoring accuracy, optimizing automated recognition systems, and
creating realistic training scenarios. These models can be effectively applied to various types of data and resolutions,
ensuring the sustainable development of technologies in defense, medicine, industry, and cybersecurity. The use of
diffusion models is proposed as a vital component of modern visual data processing strategies designed to address real-
world challenges.

Keywords: diffusion models, super-resolution, resolution enhancement, computer vision, stochastic processes,
deep learning.

Beryn.

Super-resolution (SR), a6o 3a1a4a miABHIIEHHS PO3ILTBHOT 3[aTHOCTI, € OTHIEIO 3 KITFOUYOBHUX
po6IeM KOMIT FOTEPHOTO 30py. [i CyTHICTh MOJIATac y BiHOBIECHHI BUCOKOSKICHOTO 300paKeHHS 3
HU3BKOSIKICHOTO, III0 Ma€ BEJIMKE 3HAYCHHS Ui TaKUX Tally3eid, SK MEIWIMHA, CIOCTEPeKECHHS,
BiJIeOQHAJIITHKA, @ TaKOXK OOpoOKa CYyNMyTHHKOBUX JaHUX. Y CydyacHHMX miaxojax 10 SR ocHOBHa
yBara NpuaUIsIETbCS. METOJJaM INIMOOKOT0 HaBYAaHHS, cepell AKX OKpeMe Miclie 3aiiMatoTh 1u(y3H1
mozeni [1]. BOHN € MepecneKTHBHMM IHCTPYMEHTOM, IO BUKOPHCTOBYE CTOXACTUYHI MPOLECH L
MOJIETIOBAHHS 3QJIEKHOCTEH MiX IiKCEIIMHU 300pakeHHs. [X iHHOBAIifHICTh TONArae y 34aTHOCTI
MOCTYTIOBO BIJHOBIIIOBATH BTpaueHi JeTaji 300pakeHHS ULUIAXOM IPOXOKEHHS 3BOPOTHOTO
nporecy 10 3allyMJeHHS. 3aBASKH IIbOMY BOHH JIOCATAIOTh BHCOKOTO pPIiBHS TOYHOCTI TIpH
BIJTHOBJICHHI CKJIaTHUX TEKCTYp 1 CTPYKTYP.

Judys3Hi Mozeni peanizyloTh NPUHLUUI BUKOPUCTAHHS JABOX B3A€EMOIIOB’SI3aHUX IPOLIECIB:
npsMoro Ta 380potHoro. Ilpsimuii nmpouec (forward process) mossirae y noctyrnoBoMy A0JaBaHHI
raycciBCbKoro Imymy 10 300paxeHHs. [IpoTsrom KiabKoX iTepariiii 300pakeHHsS BTpadae CBOi
MOYaTKOBI PUCH Ta NMEPETBOPIOETHCS HAa BUMAAKOBUHN HIyM. DopMasibHO 1€l MPOIEC OMUCYEThCS K
CTOXaCTMYHUH, J€ Ha KOXXHOMY KpOIl JOAA€TbCS HEBENUKa KUIbKICTh HIyMy. Y pe3ynbTarti
(bopMyeTbCS JTaTEHTHUH MPOCTIp, M0 MICTUTh PO3MOAIT JaHMX Yy Qopmi mymy. Ha erami
3BOPOTHBLOTO mpomecy (reverse process) Mojeidb HAaBYAETHCS IMOCTYIIOBO BHAAISATH IIYM,
PYXalOuUCh y 3BOPOTHOMY HampsMKy. KojkeH KpoK 3BOPOTHOTO MpOIECy BiJHOBIIOE BCE OibIle
JeTanel Mo4aTkoBOro 300pakeHHs. BHUKOpHCTOBYIOUM MONEPETHBO 3r€HEpOBaHY MOCHIIOBHICT
IIyMY Ta BUBYECHUH PO3IOJILT JAaHUX, MOJIENb 3/IaTHA BITHOBUTH BUCOKOSIKICHE 300payKeHHS.

11 aBa mpoLiecu € MaTeMaTUYHO 3B’ sI3aHUMHU, 110 3a0e3Meuye cTadUIbHICTD 1 TOCTIIOBHICTD Y
BiJTHOBJICHHI JaHuX. HaBuanHs qudy3HUX MoJenel BiZ0yBaeThCs MUIIXOM ONTUMI3aIlii KUMOBIPHOCTI
3BOPOTHOTO TMPOIECY, IO JJO3BOJISIE TOYHO MOMAETIOBATH PO3MOJUT TOYATKOBUX MaHUX. Y
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3acTOCyBaHHi 0 Super-resolution nudy3Hi Moaeni JeMOHCTPYIOTh YHIKaJdbHI MOXKIHBOCTI. BoHH
aZanTyITHCA J0 crerudiky 3a1adi 3a JOMOMOTOIO 1HiMmiai3alii, yMOBHOI reHeparlii, iTepaTuBHOTO
nokpaieHHs. [loyaTkoBUM BX1THUM 300pa>keHHSM JJIs1 3BOPOTHOTO MPOIIECy € HU3bKOSIKICHA BEPCis,
sIKa MIJAETHCS IHTEPIOJIALIT 0 0axxaHOTO Po3Mipy. TakuM YHMHOM, MOJIETh OTPUMY€E OPIEHTHD IS
BIJTHOBJICHHSI BTpadyeHHUX jAeraneil. Ha eram ymoBHOI reHepamii audy3HI MOAeni AOJAIOThH 0
Ipoliecy BITHOBJIEHHS J10JJaTKOBY YMOBY — HU3bKOsIKICHE 300paxkeHHs. L{e 3a6e3neuye KOpeKTHICTh
BITHOBJICHHSI 1 Y3TO/DKCHICTh MK IOYAaTKOBMM 1 KiHIEBUM 300pakeHHs M. KokHa ireparis
3BOPOTHOTI'O IIPOLIECY Ha eTarll ITepaTUiHOro MOKapaleHHs (CTBOPEHHS TeHepaTUBHOI MOJIEN1) A0Aa€e
Bce OUJIbIIE BHCOKOYACTOTHUX KOMIIOHEHTIB, IO JI03BOJISIE MOCTYNOBO BiJHOBIIIOBATH TE€ CKJIAJ/IHI
TEKCTYPH, 5IK1 BaXKKO BIJTBOPUTH 3a IOIIOMOIO0 3BUYAHUX METO/IIB.

Tpaauuiiini Meroau, Taki sk OikyOiuna abo OicrutaifHOBa IHTEPHONALIS, MOXYTb
BIJIHOBJIIOBATH 300pakKeHHS, OHAK 1X Pe3yJIbTaTH YacTO CTPAXKIAIOTh HA POSMUTICTH 1 BIJICYTHICTh
BUCOKOYACTOTHHUX JeTaned [2]. ¥V Tol wac sk OLIBII Cy4acHi MiAXOAM, TakKi SIK F€HEPaTHBHO-
smarainbHi Mepexi (GAN), MOXYTb CTBOpIOBAaTH JETalli, BOHM 1HOJI JOJAl0Th apTe(akTH, M0
3HIKYIOTh TPUPOAHICTh 300pakeHHs [3]. Hudysni momem migxoasats a0 3agadi SR 3 iHmioi
HNEepCHEeKTUBH. BUKOPUCTOBYIOUM CTOXaCTUYHMNA 3BOPOTHHUI IpOLIEC BiJHOBIIEHHS, BOHU JI0JIAIOTh
HEOOXIJHY JeTaji3allilo MoCTYyNoBo, 30epiratoun CTPyKTypy ¥ TEKCTypH, BIACTHBI OpUTiHAIBHUM
300pakeHHAM. 3aBJSIKU LIbOMY IX pe3yJIbTaTH MalOTh BUCOKY SIKICTb, SIKa IepeBepIye 6araTo 1HIINX
METO/IIB.

besymoBHOIO mepeBaroro AUQY3HUX MoJeJIe € BHMCOKA aJalTHUBHICTb, SKa J103BOJISE
3aCTOCOBYBATH iX 10 Pi3HHX TUIIB JaHUX Ta po3AUIbHOCTEeH. Hampukiian, BOHH MOXYTh OJTHAaKOBO
edexkTuBHO TpamoBatd 3 (Qororpadismu, Memmunumu 3HiMkamu (MPT, KT) abo HaBiTh
CYITyTHUKOBUMH 300paxeHHAMHU. lLle nmocsraerbcsi 3aBIOsSKM  yHIBEpCAIBHOMY PHUHIUILY
CTOXAaCTUYHOIO IMIPOIECy, KOJM MOJeNi MNpaliolTh 13 IMIMPOKUM CIIEKTPOM BXIJHHMX JIaHHX,
MOCTYIIOBO BIIHOBJIFOIOYH TOTPIOHY SIKICTh Ha OCHOBI 6a30Boro mymy. Kpim Toro, nudy3Hi Mozei
JIETKO MacIITa0yrOThCS AJIS 3a/1a4 13 PI3HUMU po3aUTbHOCTAMU. Ju]y3HI MOJENi MaloTh YHIKAIbHY
3IaTHICTh MPALOBATH 31 CKJIAQAHUMH W HENIHIHHUMH PO3MOIIAMH, SKi 9acTO 3YCTpPIYarOThCA Y
OpUpoAHUX JaHuX. lLle nocAraerbcs 3aBISKM 1TEPaTHUBHOMY XapakTepy IiXHbOTO 3BOPOTHOIO
IPOLECY, KOJIM MOJIEJ MOYMHAIOTh 3 AOJaBaHHS LIyMy 0 300pa)xeHHs, 110 (akTH4HO "po3dyuHsE"
OpUTIHANBHI CTPYKTYPH B XaOTHUHOMY po3nofim. IToTiM, y Xoai 3BOPOTHOrO MpoOIEeCy, BOHHU
MOCTYIIOBO BIJHOBJIIOIOTH 300pa)K€HHS, BUKOPUCTOBYIOUM 1H(OpMaLil0, OTpUMaHy IiJ Yac
HaBuaHHs. el minxin n1o3Boisie Audy3HUM MOZEsSM "BIOBIIOBATH" CKIIQAHI TEKCTYPH, K1 BaXKKO
BIATBOPUTH IHIIUMU MeToAaMU. EQexTuBHICTh AU(Y3HHX Mozened y BHUpILIEHH] 3aaayi
CYIeppO311JIbHOI 3/1aTHOCTI MPOMOHYETHCS OLIIHIOBATHU 3a JOMOMOTOK KOMIUIEKCHOTO MiXOY, LI0
Bkitoyae 00’extuBHI MeTpuku (PSNR mis Townocti Ta SSIM s cTpyktypHOi CcXO0XKOCTi) 1
Cy0’€KTUBHY Bi3yaJbHY OLIHKY, SIKi pa30M J103BOJISIOTh BPaxyBaTH TOUHICTh, CTPYKTYPHY CX0XKICTh
1 CIIPUUAHSATTS SIKOCT1 BiJTHOBJICHHX 300pakeHb [4].

Judy3Hi Mozeni MatoTh 3HAUHUI MOTEHIial /7S 3aCTOCYBaHHA y BIHCBKOBIH cepi, 30kpeMa
JUIsL pO3B’I3aHHS 33/1a4 MIABUILEHHS PO3AUIBHOI 3JaTHOCTI 300paxeHb (super-resolution) B yMoBax,
KOJIM TOYHICTD 1 JIeTalli3allis € KpUTHYHO BaXKIMBUMHU. 30KpeMa, 3aCTOCYBaHHs AU(y3HUX Mojenen
y BIMCBHKOBIM pO3BIALI ISl aHali3y CYNYTHUKOBHUX 300pa)k€Hb HHM3BKOI SIKOCTI, CHPUYMHEHOI
BIJICTAHHIO 4YM TOTOJHMMH YMOBAaMH, JI03BOJISIE€ TOKPAIyBaTH JETalli3allilo i BiAHOBJIECHHS
IpiOHUX JeTaned, Takux sSK KOHTypu Oy/iBeslb, TEXHIKM UM NUISXIB IE€PECyBaHHS, BUSBISATH
NPUXOBaHI 00'€KTH, 30KpeMa 3aMacKOBaHy BIHCHKOBY TEXHIKY, 3aB/SKU YITKOMY BiJHOBIJICHHIO
TEKCTYP, a TAKOX MPOTHO3YBATH 3MIHU Ye€pe3 aHaJIi3 MOCIIOBHOCTI 3HIMKIB, IO CIIPHUSIE BUSBICHHIO
nepemiiieHHss cun abo oOmagHaHHA Ha Tepurtopii. Takoxk, audy3Hi Moaeni MOXyThb 3HAYHO
MOKPALUTH SIKICTh BIJEONMOTOKY 3 APOHIB 1 KaMep CIIOCTEPEX EHHs, K1 4acTO CTHKAIOThCA 3
0OMEKEHHSIMH Yepe3 HU3bKY PO3LIbHY 3aTHICTh, HEJOCTATHE OCBITICHHS, aTMOC(HEPHI MEPEIKOTU
YH BEJIMKI B1JICTaH1, 3a0€3MeuyI0Uud YITKICTh 300paXkeHb y pealbHOMY 4Yaci, JeTalli3allilo KOHTYPIB i
TEKCTYp TEXHIKH, JIFOJCH Ta IHIIMX 00'€KTIB I TOUHOI 1JeHTU(DIKALT IT1JIeH, a TAKOXK ONTUMI3YI0Un
pPOOOTY CHCTEM aBTOMATHYHOTO PO3Mi3HABAHHS TS IIIBU/IIIOTO MPUHHATTS TAKTUIHUX PIllICHb.
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Buxopuctanas nudy3Hux MoIene MOKe 3aCTOCOBYBATHCS ISl MiJTOTOBKH BiHCHKOBUX
KaJIpiB y CUMYJISIIISX OOMOBUX Iii NUISIXOM BITHOBJICHHS PEATICTUYHUX 300payKeHb /I HaBYATbHUX
TpEeHaXXepiB, MOKPAIIEHHS SKOCTI BIPTyaJIbHUX CIIEHApiiB 4epe3 BUCOKOSKICHI TEKCTypU MOJEIeH
00MOBHX 30H, TEXHIKHU Ta JJaHAMAaQTIB, a TAKOXK JETAILHOTO aHAJIi3y BiJleoMaTepialiB I PO3POOKH
HOBHX cTpaTeriii. [ligBuIlyBaTH po3AUIbHY 3/1aTHICTh TEIJIOBUX 1 palapHUX 300paKEHb € KPUTHIHO
BOUIMBUM [UIsl BIMICHKOBUX oOmepaliii y TeMHHUH 4yac a00u abo 3a CKJIaJHUX IOTOJAHUX YMOB,
3a0e3Meuyour BIIHOBJICHHS YITKMX KOHTYPIB y TEIUIOBHX 300pakeHHSAX s iAeHTUdIKaril
TPAHCIIOPTHHUX 3aco0iB, JIOJEH Ta iX TMEpPEeMIIICHHs, MOKPAIIESHHS PaaioioKaIliiHUX KapT depes
BIJTHOBJICHHSI TEKCTYpH HOBEPXHI YM O0’€KTIB Ha OCHOBI paJlapHUX JAaHUX, a TAKOX 3HWKCHHS
MOXHOOK MUIIXOM YCYHEHHS IIIyMy 1 apTe(akTiB, SKi BAHHKAIOTh IT1J1 Yac 3HOMKH.

3acrocyBaHHS AU(Y3HUX MOJENEH M03BOJSE MIATPUMYBATH BUCOKHH PIBEHb CHTYaliiHOI
0013HaHOCTI 3aBISKHM BHCOKOTOYHOMY MOHITOPHHTY KOPJOHIB, 30KpeMa IOKPAIIEHHIO SKOCTI
300paxkeHb s igeHTudikaiii nopymeHs ab0 HECAHKIIIOHOBAHOTO MEPECYBAHHS, a TAKOXK aHAII3Y
CTaHy CTpaTeriYHuX 00’ €KTIB JJIS BHSBJICHHS MOTCHIIIMHUX PU3MKIB, MOIIKOKEHb YM 3MiH y iX
CTPYKTYpi. Y kibepbesnerni nudy3Hi MOJei MOKYTh OyTH IHTETPOBaHi /IS 3aXUCTY JaHUX 1 aHAIIZY
MOTEHIIIHHUX KiOep3arpo3 IUIIXO0M BiTHOBJICHHS MOIIKOKEHUX 300paKeHb, TAKUX SK 3amu(poBaHi
abo momIKopKeHi mij yac kibeparak ¢ororpadii Ta BigeoMaTepianu, a TAKOXK MOKPAIICHHS aHAIII3Y
iH(dopMaLiifHUX TOTOKIB 4epe3 JeTanmizaliio i oOpoOKy 300pakeHb, OTPUMAHUX 3 E€IEKTPOHHUX
IIPUCTPOIB YA MEPEIKEBUX Kamep.

Takum unHOM, nu(y3HI MOJENl s BIHCHKOBUX 3aB/IaHb € YHIBEPCAIbHUM 1HCTPYMEHTOM,
1o 3a0e3nevye BiTHOBICHHS BUCOKOSKICHUX 300pakeHb 13 3HIDKEHHM PIBHEM IIIyMY, OTIEpPAaTHBHY
00pOoOKy JaHMX IJI yXBaJEHHS TAKTUYHHUX DIlIEHb y pEalbHOMY 4aci, THy4YKe BUKOPUCTAHHS BiJ
CYITyTHUKOBO{ PO3BIJIKH /IO aHANI3Y TEIJIOBI30PHHUX JAHHX, PEATICTHYHI CUMYJIISIIT U €(hEeKTUBHUX
BiIliCKOBHX TPEHYBaHb 1 MIATOTOBKH JI0 CKJIAJHUX CUTYallii, paJuKalbHO 3MIHIOIOUYU MiAXiJT A0
aHayizy # oOpoOKH Bi3yalbHUX JaHMX, IMiJBUIIYIOYH SKICTh PO3BIAKH, MOHITOPHHTY, HiATOTOBKU
KaJpiB Ta ONTHUMI3yIOUM BHKOPUCTAHHS TEXHIKM B pPEaJbHUX YMOBAaX, 1 CTalOTh HEBiJ €MHOIO
YaCTUHOIO Cy4acHOT 0OOPOHHOI CTpaTerii.

BucHoBkmn.

VYHiKkanpHa THYYKICTh JTU(QY3HUX MoJenel 103Bojse epeKTUBHO aJanTyBaTH iX 10 PI3HUX
TUIIB JJAHUX: Bl MEAUYHUX 1 CYITyTHUKOBHX 3HIMKIB 710 poTorpadii i TEmIoBi31HHUX 300paxeHb. Y
BIMCHKOBIH cdepi nudy3Hi MOAENI MalOTh 3HAYHHUN MOTEHI[IAJI Y TAKUX 3aBJIaHHSX, SIK MOKPAILEHHS
SKOCTI CYNyTHUKOBUX JaHUX, BIJCOMOTOKY 3 JpPOHIB, TEIJIOBUX 1 pagapHUX 300pakeHb. BoHu
JIO3BOJIAIOTH ~ MIJBUIIYBAaTH TOYHICTH MOHITOPUHTY, JI€Tali3allll0 CTpaTeriyHUX OO0 €KTIB,
1IeHTH(IKaIliI0 TPUXOBAHUX 1iJeH Ta e(heKTUBHICTh aBTOMATU30BAHUX CHUCTEM PO3Mi3HABAHHS, 110
€ KpUTHUYHO BaXJINBUM JIJIs1 0OOPOHHUX CTpaTeriid. 3araiaoM, 1udy3Hi MOJEI1 CTal0Th YHIBEPCAIbHUM
IHCTPYMEHTOM, 3/1aTHUM 3a0€3MeYNTH HOBUI piBEHb AKOCTI B PO3BI/IIl, MOHITOPUHTY, aHai31 TaHUX
Ta MAroTOBLi KaipiB. IX iHTerpamis B pi3Hi ramysi, BKIIOYalOuM OOGOPOHY, MEIHUIMHY Ta
IPOMHUCIIOBICTh, CIPUSTHME CTAJIOMY PO3BUTKY TEXHOJIOT1H 1 BIAMOBIJa€ BUKJIMKAM Cy4acHOTI'O CBITY.
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METOIUKA BUSHAUEHHSI PIBHSI JOCTOBIPHOCTI BIOI'PA®IN 3 BIKIIIEIT HA
BA3I CEMAHTHYHOI'O HETBOPKIHI'Y

Anomayin: Y pobomi npedcmaenieHo MemoOuKy GU3HAUEHHS PieHsi 0ocmogipHocmi axmie y 6ioepagisx,
HasedeHux y Bikinedii, wo 6azyemvcs HA 3ACMOCY8AHHI GenUKUX MOSHUX Mmoolenet (LLM) ma cemanmuunoeo
Hemeopkiney. Memoouka nepedbauac no6yo0o8y cemanmuunoi mepeici Oioepadii KoHKpemHoi 0cobu 3 ypaxyeaHHIMm
NOCIO08HUX 36 'A3KI8 MIdHC NOOIAMU ) YACOBOMY KOHMEKCMI Ma acoyiayilinux 38 a3Kie Midc nooiamu i KOHYenmamu.
Hocniosxcennsn 30iCHIOEMbCS 3 OONOMO2010 BEAUKUX MOGHUX modenel, 30kpema GPT-4, Llama-3, 0l ma inwux, wo
dopmyroms "piti gipmyanvnux excnepmig”. L]i moOeni 003801510Mb AHANIZYBAMU CEMAHMUYHY Mepexcy, dopmysamu
BUCHOBKU, Hadasamu Yugposi oyinku docmogipnocmi bioepaghii ma niomeepoxcysamu abo cnpocmosygamu ii Kio4osi
MOMeHmuU HA OCHO8I ¢haxmis. Bionosioi piznux mooeneil y3a2aibHIOIOMbCa 04 00 ekmusHoi oyinku. Pesynvmamu
0eMOHCmMPYIOmb eheKmugnicms nioxooy y UseieHHI Henpasousux Gaxkmis ma nioguweHHi 00CmMoGIpPHOCII 8IOKPUMUX
ooiceper.

Kniouosi cnoea: eenuxi mogui moodeni (LLM), wmyunuti inmenexm, ceMAHMUYHUL HEMEOPKIHE, OYIHKA
docmosiprocmi, 6ioepagis, yugposa sepugpikayis

Abstract: The paper presents a methodology for determining the reliability of facts in biographies provided on
Wikipedia, based on the application of large language models (LLMs) and semantic networking. The methodology
involves constructing a semantic network of an individual's biography, taking into account sequential connections
between events in a temporal context as well as associative links between events and concepts. The study is conducted
using large language models, including GPT-4, Llama-3, 01, and others, which collectively form a "swarm of virtual
experts." These models enable the analysis of the semantic network, the formation of conclusions, the provision of digital
reliability assessments of biographies, and the verification or refutation of key points based on facts. Responses from
various models are synthesized for an objective evaluation. The results demonstrate the effectiveness of the approach in
identifying false information and improving the reliability of open sources.

Keywords: large language models (LLM), artificial intelligence, semantic networking, reliability assessment,
biography, digital verification

Beryn

Bikinenis, sik BUIbHA €HIUKIIONE IS, CTajla HE3aMIHHUM JKEpEsIoM iHpopMallii 171 MIJTbHOHIB
KOPUCTYBadiB M0 BCcboMy CBITY. OJlHaK, He3Ba)Kal0ud Ha CBOIO IMOMYJISIPHICTh Ta BIAKPUTICTb,
Bikineniss He mo36aBnena HemomikiB. OJHUM 3 HAHOUIBII TOCTPUX € TMpodJeMa HasIBHOCTI
HenpaBAMBHX (PakTiB y Giorpadisx, iki MOXKYTh OyTH CTBOPEH1 HABMUCHO a00 yepe3 MOMMIKY. Taka
1H(dopMallisl Hece 3arpo3y SK JUIsl 1HAWBIIyallbHOI, TaK 1 JJIs KOJIEKTUBHOI aM'sTi, a TAKOX MOXKe
BIUIMBATU Ha pIIIEHHs, NPUIHATI Ha OcHOBI i€l iHpopmarii. [IpoTe, uepe3 BIAKPUTUI XapakTep
penaryBaHHs Taki pecypcu sk Bikimemis 4yacTto cTaloTh 00’€KTOM MAaHIMYJSALIA Ta MICTITh
HenpaBAuBi GakTH, 0COOIUBO B OiorpadiuHUX CTATTAX, IKi 0COOIMBO BPa3JMBi 10 TAKUX MPOOIIEM,
a/DKe BOHH € TIPEMETOM yBaru mmpokoi ayauropii [1]. Lle cTBoproe BUKIMKH JJIsT HAYKOBOI Ta
OCBITHBOI CIIIIBHOTH, SIKI TIOKJIAIAl0THCS HAa JOCTOBIPHICTh TAKHUX JIKEpEll.

[ tyuHuit iHTENEKT, a came Benuki MoBHI Mojeni (LLM), BiikpuBatoTh HOBI MOKIIMBOCTI JIJIst
aBTOMATH30BaHOI MEPEBIPKU TEKCTOBUX MaHMX [2]. CeMaHTHYHI Mepexi, 1110 MOJIENIOIOTh 3B’ A3KH
MDX MOJISIMU Ta MOHATTSIMH, BIIKPUBAIOTh HOB1 MOYKJIMBOCTI JJIs aHANI3y Ta Bepu]ikalii TeKCTOBUX
nanux [3]. CeMaHTUYHUI HETBOPKIHT, K MiJIX11 0 aHANi3y 3B’SI3KiB MK MOJISIMU Ta KOHIENTAMH,
JIOTIOBHIOE 111 TEXHOJIOT1{, JO3BOJISIIOUM CTBOPIOBATU CTPYKTYpOBaHI MEpe:KeBl MOJIENI TEKCTIB, SIKi
BiJI0OpaxaroTh B3a€MO3B’sI3KU (akTiB [4].

Meta podoTH — po3poOka MeTOA0JIOTIi (a y mogaabIioMmy — iHGOpMAaIiiHOT TEXHOJIOTT) TS
BUSIBJICHHS HETIPaBIMBUX (akTiB y OiorpadiuHUX CTATTSIX 32 JOMOMOI0I0 BETMKUX MOBHUX MOJIeNIen
Ta CEMAaHTHYHOTO HETBOPKIHTY.

Jnist nocsirHeHHs i€l MeTH nepen0avyaeTbcss BUKOHAHHS TaKUX 3aBIaHb!
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1. Buxopucratu Benuki MoBHI Mojeni GPT-4 (cepsic ChatGPT), Llama-3 (cepsic Groq),
01 (cepgic Deepseek) Tomo ais moOy10BY Ta aHATI3y CEMAaHTUYHOT MEPEKi Ha 0a31 aBTOMAaTHYHOTO
aHaJizy Tekcry Oiorpadii.

2. OUiHUTH JOCTOBIPHICTH KOJKHOTO 3B 3Ky Y MEPEKi Ta CEMAaHTUYHOT MEPEXKi B IIIIOMY.

3. Po3pobutn meronuky GpopMyBaHHS y3arajlbHEHHS BHCHOBKIB, OTpPUMaHUX Bif "poro
BIpTyaJIbHUX €KCIEPTIB".

VY cyuacHiil HAyKOBiif JiTepaTypi HNIHPOKO TOCIHIHKYETHCS 3aCTOCYBAHHS IITYYHOTO 1HTEIIEKTY
JUTs BUSIBIIeHHS Ae3iHdopmartii [S], mpoTe Bepudikaiis 6iorpadiuHuX TaHUX Y BIIKPUTHX JDKEpEIIax,
y TOMY YHMCIIi, 32 JIOTIOMOTOI0 CEMAaHTUYHOTO HETBOPKIHTY € HOBHUM HAIIPSIMOM.

PoGotu y cdepi aBroMaTHYHOI MEpeBipKU (HaKTIiB aKTHBHO PO3BUBAIOTHCSI. METOIUKH, IO
0a3yroThCs Ha TpadoBUX CTPYKTYpax [6], Ta aHami3i Tekery uyepe3 LLM [7] neMOHCTpYIOTh BUCOKUI
noTeHIian y Bepudikarii iHdopmarii. YTiM, JOCTIHKEHHS, SKi TOEAHYIOTh CEMaHTHYHI MEPEeXi Ta
LLM nns nepeBipku 6iorpadiunux (HakTiB, € HEAOCTATHHO MPECTABICHUMH.

KoHnnermis "poro BipTyanbHHX ekcriepTiB" [8], [9], IpONOHYIOTh MEPCIEKTUBHI MiAX0IU 10
no0yI0BH CEMAaHTHUYHHUX MEpexX. [HII TOCTiKEHHS aKIeHTYIOTh yBary Ha 3actocyBanHi LLM s
aHali3y TEKCTy, aye 37e0inbpioro He (OKyCylThbCa Ha X iHTerpaiii 3 MeTogamMu CeMaHTHYHOTO
MO/ICITFOBAHHSI.

MeTtoaunka

Metoauka BUSIBICHHSI HEMPaBIUBUX (PakTiB y Oiorpadisx BriIrodae Bukopuctanas LLM s

ToOTO HUIAIXOM 3aCTOCYBAaHHS CEMAaHTHYHOTO HETBOpKIiHTY [10] ¢dopmyeThcsi ceMaHTHYHA
Mepeka, sIka Hajaldl € OCHOBHMM O0’€KTOM JOCTII)KCHHS 1 OIiHOK. Hwmkde HaBeneHO eranu
METOAMKH PAa30M i3 BIAMOBIIHUMHU TPOMITTAMH.

1. Dopmyeanna cemanmuunoi mepedyci diozpaghii

Jnist hopMyBaHHS CEeMaHTHYHOI MEPEXKi BUKOPHCTOBYEThCS TEKCT Oiorpadii 3 Bikimeii.

3a nonomororo LLM cTBOpIO€THCS CEeMaHTHUHA MEpexka, 1€ BY3JIU MPEICTABIAIOThH MO1T a00
KOHIIENTH, a 3B SI3KM — BIAHOIIEHHS MK HUMH. PO3risimaeTbcs ABa BHUIOM 3B’ SI3KIB — 4YaCOBi-
CIPSIMOBaHIi: BU3HAYaIOTh MOCIIIOBHICTh MOIM y Yaci, a TAKOX acOUMiaTHBHI: 3B’ A3YIOTh MOJIi 3
noHsaTTaMEu. CeMaHTHYHA Mepexa MozemoeThes sk rpad G=(V,E), ne V — MHOxuHA By37iB (IOIii
abo koHnentiB), a E — MHoXuHa 3B’s3KkiB MK HUMH. KoxeH 3B’s130k € € E mae Bary Pe 110
BiJJ0Opakae 1Ooro JOCTOBIPHICTD.

@dopMyBaHHS Mepexki 3/IHCHIOETBCS uepe3 CHellaJlbHO pPO3pOo0JIeHI MPOMIITH, SKi Y
CTPYKTYpOBaHOMY BUIJIA/I BUTATYIOTh KJIFOUOBI MOAII Ta iX MOCII0BHICTb.

Jnis koxHOi 6iorpadii BU3HAYaOThCs KIFOYOBI MO, IO CTPYKTYPOBaHI y XpPOHOJIOTIYHOMY
HOPSAIKY, JUIS LIbOT'O 3aCTOCOBYETHCS MpoMNT A0 LLM:

Bisemu mexcm 6ioepaii’ [im’s noounu]. Buznay ocnogHi noodii y XpOHOLO2IYHOMY HOPSAOKY.
Dopmyniosamu nodii kopomko, 0o 5 cuis. Bugeou pesynomam y ¢opmami: "nodial;nooial", oe
"nooisl" siooynacs paniwe 3a "nodial". [lomim "nodin2;nodia3", nomim "noodin3;noodia4". Toomo
nepuia nooisi HOB020 psAdKa 6ionosidae Opyeiti nodii nonepedHvoeo psaoka". Ilpuxiaou
nocnioosHocmi: "napoouscs; wkona'; "wxona; incmumym". I mak oani. Koowcna napa nooiu -
oxpemum paoxkom. Ocy mexcm biocpaii: ...

O‘-IiKYBaHI/Iﬁ PE3YJIbTAaT BUKOHAHHS ObOI'0 IPOMIITY Ma€ MaTHU BUTJIA:

"Hapoooicennsn; Haguanns"
"Haeuanns, [louamoxk xap'epu”

ITicist HEOro AOAAIOTHCS aCOLIATUBHI 3B A3KM MIXK MOJISIMHU Ta MOHITTIMH, IO JOIIOMArarTh
3pO3yMITH KOHTEKCT KOKHOT moii. Lle 103Bosie CTBOPUTH KOMILIEKCHY MOJEIb, SIKa BPaXxOBYE HE
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TUIBKHM 9acOBi, a ¥ acOI[iaTUBHI 3B’3KH MK HOJIISIMH Ta KOHIeTaMH. JIjis Jo1aBaHHS MOHATH /10
noxii i popmyBaHHs acouiaTUBHMX 3B’A3KIB 3aCTOCOBYETHCS APYTMid IPOMIIT:

Ha ocnosi mexcmy 6ioepaii’ [im’s 1ioounu] 3natiou koHyenmu, no8 si3ami 3 KOICHOI NOOIET0.
Buseou pezynemam y ¢hopmami: "nodis;nonsmms”. [100ii 6yno suznaveno guuje:

HapoOusCs;, Ha84aHHs 8 CIMHAZIL

HABYAHMHSA 8 2IMHA3IL; HABUAHHSA 8 YHIgepcumemi

HABYAHHSA 8 YHIGepcUmemi, OMPUMAHHS HAYKOBO20 36AHHA MA2ICMpa...

OuikyBaHUil pe3yibTaT BUKOHAHHS APYTrOTo MPOMITY Ma€ MaTH BUTIIA:

"Haeuanus, Yuieepcumem"
"Ilouamox kap'epu, Komnanisn"

2. Ouyinka 0oocmogipnocmi 3 euxkopucmanuam LLM

Or1iHKa JOCTOBIPHOCTI KOXKHOTO 3B’SI3KY Y MEpPEXKi € BXKIIUBUM eTaroM. [[Jist 4acoBUX 3B’ SI3KiB
OIliHKA ITPOBOJIUTHCS HA OCHOBI JIOTIKM XPOHOJIOTIT TIOJTii, a JIJIs1 aCOLIaTUBHUX 3B’ S3KiB — Ha OCHOBI
KOPEKTHOCTI BiIOOpaKeHHS MOHATTS y KOHTEKCTI TOi1.

Benuki MmoBHI Mozieni GopMyIOTh "piii BIpTyadbHUX €KCHEPTIB" 7S OI[IHKHU 3B S3KiB Y MEpexi,
a caMe YacoBUX 3B’SI3KiB, IIO OI[IHIOIOTHCS HAa OCHOBI XPOHOJIOTIYHOI Y3TOJKEHOCTI TOIIH, i
acouiaTUBHHX 3B’AI3KiB, IKi aHAI3YIOThCS Yepe3 MepPeBIPKY JOT1YHOT 1 HaKTUUHOT BiAMOBITHOCTI

Jsisi KOXKHOTO 3B’S3KYy BHKOHYETHCS OIiHKA JOCTOBIPHOCTI Ha OCHOBI (DakTiB, 3HAWICHUX Y
30BHIIIHIX JUKepenax abo BHYTPIIIHIX 0a3ax 3HaHb MoJeseil. KoxeH 38’130k OTpUMYeE Bary W sika €

YHCIIOBOIO OI[IHKOIO OCTOBIPHOCTI 3B’s3Ky Mik By3iamu | Ta j. OIliHKa MPOBOAUTHCS KiJIbKOMA
MOBHUMH MOJICIISIMH, TTICJIS YOTO iX pe3yIbTaTH arperytoThCs.

s KOXKHOTO 3B’S3Ky Yy Mepexi (opMmyeTbcs BaroBa OIliHKa, LI0 BijoOpaxae HOro
JOCTOBIPHICTb.

Jlns k0oXHOT YacoBOi mMapu MOJISA-TIOIS MPOBOIUTHCS OIHKA TOCTOBIpHOCTI. J[s 1boro
BBOJIMTHCS IIPOMIIT:

Hna 6ioepaghii noounu [6cmasumu mexcm 6Oiocpaii] nepesip 00CMOBIPHICHb KONCHO2O
38’a3ky Vv ¢popmami "nodisl;nodisl".  Bueedu oyinxy oocmosipnocmi 'y Gopmami:
"nooisl ;noois2; oyinka (0-1)".

O‘-liKyBaHHﬁ pe3yJbTaT BUKOHAHHSA HLOT0 IMPOMIITY Ma€ BUIJISA/L:

"Hapoooicenns; Haguanns; 1"
"Hasuanns, [louamox xap'epu;0.9"
Im. i

Jlist KoxHOT 1oAli Ta MOHATTS NEPEBIPAETHCS BIANOBIIHICTD iXHBOTO 3B’ SI3KY.
Ji1s K0’kHOT acoLiaTUBHOI apy MOAISI-TOHATTS TaKOX IIPOBOIUTHCS OIIHKA TOCTOBIPHOCTI Ha
OCHOBI BIJIOBIAHOCT]I MOHATTS A0 KOHTEKCTY. J{JIs IIbOTO BBOJUTHCS IPOMIIT:

Hna 6ioepaghii moounu [6cmasumu mexcm Oioepagii] oyinime docmosipHicme 38 'A3Ki6 Y
Gopmami "nodis;nonsamms”. Buseou pesynomam y popmami: "nodis, nonsmms;oyinka (0-1)".

VY pe3ynbTaTi bOTO KOXKEH YaCOBHM 3B’S30K MIK IMOJIISIMU OIIIHIOETHCS HA BiAMOBIIHICTH
XpoHoJiorii Ta yioriui. O4uikyBaHuii pe3yabTar:

"Haeuanus, Yuieepcumem,().95"
"Ilouamox kap'epu, Komnanis;0.85"
L m.i.

3. Y3acanvnenns pesynomamis
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AHaTI3YIOTBCS BIAMOBIAI PI3HUX MoJenel, iX y3TroJKeHICTh Ta HMOBIpHI pPO30IKHOCTI.
3arangpHa TIOCTOBIPHICTh MEPEKI OOUMCITIOETHCS SIK 3BaYKEHE CEpeTHE 3HAUCHHST IOCTOBIPHOCTEH yCiX
3B’SI3KIB:

a- ZeeEﬂme P(e) + ’B ' ZGEEassoc P(e)
Etime| + |E

P(G) =

assoc |

ne:
— Etime — MHO>HMHA 4aCOBUX 3B’ SI3KiB;
— Eassoc — MHOKHMHA acOI[laTUBHUX 3B’ S3KIB;
— P(e) — Baru 3B s13KkiB;
— o 1 p— BaroBi KoedillieHTH IJIs YACOBHUX 1 aCOI[iaTHBHUX 3B’ s3KiB (a0 + f=1).
Baru W, BH3HA4aIOTBCS K CEPE/HE 3HAYCHHS OLIHOK, OTPMMAHHUX BiJl ICKUJIBKOX MOBHHMX

MOJIeJIeH, 10 BXOAATH 10 "pOro BIpTyadbHUX EKCIIEPTIB'":
13
W == W,
[ )
. . o K . . . . .
Jie N — KUIBKICTh MOAiesied, W; — OLlIHKa MOJeIi K 1u1st 3B’13Ky MIXK By3J1aMH | Ta j.

BinmoBizi KOXKHOI MOl arperyrThCsl Yepe3 CepeHe 3HAUYCHHS OLIHOK. JIJis miJBUIECHHS
JIOCTOBIPHOCTI BPaXOBY€ETHCS YACTOTA MIATBEPKEHHS (PAKTIB PIZHUMH MOJIEIISIMU.

Bianosizal pi3HUX MOBHUX MoJiesiell MOPIBHIOIOThCA Ta y3arajbHIOIOThCS. OcoOnuBY yBary
NPUIUIAETHCS BUMIAAKaM PO301KHOCTEH y OIIHKAX, sIKi JI01aTKOBO MEPEBIPSIFOTHCS HA BiAMOBIAHICTh
dakTam.

4. Inmezpanvna oyinka 0ocmogiprocmi

[aTerpanpHa OliHKa MEpEeKi MPOBOAUTHCS 3 YPaXyBaHHIM BaroBUX KOe(ili€HTIB Ji1 YaCOBUX
1 acollIaTUBHUX 3B’s13KiB. Barosi koeQilieHTH BU3HAYAIOTHCS] TAKIM YHHOM: JUISl YACOBHX 3B’SI3KIB O
= 0.7, nns acomiatuBHUX B = 0.3. Jlns oTpuMaHHS 1HTETPATbHOT OI[IHKA BBOAUTHCS IIPOMIIT:

Ha ocnosi nacmynnux 36’53k i iXHIX OYiHOK (Yacosi ma acoyiamueni) po3paxyii iHMezpaibHy
OYIHKY 00CMOGIPHOCIIE CEMAHMUYHOL MepediCi:

Yacosi 36 ’sa3xu. [nepenix uacosux 36 's13xi6 y hopmami "nodisl ;nodin2;oyinka"].
Acoyiamusni 36 s3xu. [nepenix acoyiamusnux 36 's3xie y popmami "nodis;nonsmms; oyinka'].
Bpaxyii saco6i koegiyicumu: ons uacosux 36 sizkie alpha = 0.7, ons acoyiamusnux beta = 0.3,
Pezynomam susedu y euensaoi: "lnmeepanvna oyinka = snauenusn”.

OuikyBaHuii pe3yJbTaT Ma€ NPpUOJIM3HO TAKHI BUTJIS:
"Inmeepanvna oyinka = 0.91"
JI1s1 J0AaTKOBOI0 MOSICHEHHA JOCTOBIPHOCTI 32CTOCOBYETHCS NMPOMIIT:

[osicrhu, sxi 36’sa3xku (wacosi uu acoyiamusHi) HAUOINbULE BNAUHYIU HA 3A2ATIbHY OYIHKY.
Bueeou oemanvnuti ananiz okpemux oyiHox.

S. Aepezosana ouyinka
JlJ1si OTpMMAaHHSI arperoBaHoi OLIHKM HA OCHOBi OLIHOK 3B’SI3KIiB BiJ KiJILKOX MOBHHX

mozeeii (GPT-4, Llama-3, 01) 3acTocoBYETHCSI POMIIT:

s HacmynHux oyiHOK 38 3Ki6 8i0 KiIbKOX MOGHUX MOOeell.

[nepenix oyinox y ¢opmami "noodisl;nodisl;oyinka mooenil, oyinxa modenil, oyiHka
mooeni3"]

Pospaxyii cepednio oyinKy KOIHCHO2O0 38 'S3KY, A MAKONC 3A2AIbHY IHMESPATIbHY OYIHKY MePextC.
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Pesynomam euseou y popmami:

n ; ’ . ; . y . n
- "Cepeons oyinka 36°a3Ky. nodisal ;nodisal,;cepeone 3nauenms".
- "Inmezpanvra oyinka mepedrci = 3HaueHHs" .

OuikyBaHuii pe3y/ibTaT MO:Ke MATH TAKHI BUIJIA/L:

"Cepeous oyinka 36 ’a3ky: Hapooowcenns, Hasuanns, 0.95"
"Cepeons oyinka 36 ’a3ky.: Hasuanns, I[louamox xap'epu,0.9"
"[umeepanvra oyinka mepedxci = (0.92"

[Ipukitan 3acTocyBaHHs

s nemoHcTpamii MeToaukud Oyino o0paHo Oiorpadiro BiJOMOro BYEHOTO MaTeMaTHKa
Jleonapaa Eiinepa 3 Bikinenii. 3acTocoBaHo CIpoIEeHY METOJIUKY, IO OXOIUTIOE eTanu (hOpMyBaHHS
CEMaHTHUYHOI MEpeXi,i OLIHKK JOCTOBIPHOCTI OKpEMHUX 3B’S3KIB 1 BY3JIIB 1 arperaiii pe3yJbTaTiB
pizaux LLM.

Jasi popMyBaHHSI CEMAHTHYHOI MepexXi y I[bOMY BHIIQIKY 3aCTOCOBYBAJIUCH NMPOMITH
AJIA BUJAJICHHS OCHOBHHMX Tofiii Oiorpadii Ta moOynoBa 4acoBHX 3B’SI3KiB MK HHUMH, a TaKOXK
3HaXOJ/KEHHSI MTOHATH Ta (POPMYBaHHS aCOI[IaTHBHUX 3B’SI3KIB M)XK HUMH Ta TOHSATTSIMHU.

[TpomnT ans BuAiIeHHS OCHOBHUX moii 6iorpadii Jleonapaa Eiinepa ta moOymoBa 4acoBHX
3B A3KIB MK HUMU MAa€ BUTJIA;

Bisbymu mexcm bioepaii Jleonapoa Eiinepa. Busnay ocHogHi nodii' y XxpoHOI02T4HOMY HOPSAOK).
Dopmyniosamu nodii kopomko, 00 5 cnie. Buseou pezynemam y ¢popmami: "nodial;nooisa2",
0e "nooisl" siodynaca paniwe 3a "nodial". Ilomim "noois2;nodia3", nomim "nooisa3;nodiad".
Tobmo nepwia nodis H08020 psadKa 8ionogioac dpyaiti nodii nonepednvo2o paoka". [Ipuxnaou
nocrioosHocmi: "napoouscs, wkona"; "wxona; incmumym". I max oani. Kosxcna napa nooiii -
oxpemum psaoxkom. Ocy mexcm biocpaii: ...

VY BignoBiape Ha 1eit mpomnt LLM BunaroTh NpuOIM3HO TaKe:

HapoOuecs; HABYAHHsL 8 2IMHA3IT

HABYAHHA 6 2IMHA3IL; HAGYAHHA 8 YHIgepcumemi

HABYAHHA 8 YHIGepCcUmemi, OMPUMAHHS HAYKOB020 36aHHs Mazicmpa

OMPUMAHHSL HAYKOBO20 36AHHS MA2ICMPA, 8i0M08A 8i0 Meo02ii

8iomoea 6i0 meonozii; npoghecopcvka nocaoa 6 Cankm-Ilemep6yp3i

npoghecopcvra nocada ¢ Canxkm-Ilemepoypsi, 3naviomcmeo 3 Xpucmusanom I onbodbaxom
3Haviomemeo 3 Xpucmusnom I'onvobaxom, obilimanusa nocaou npoghecopa hizuxu
00lliManHs nocaou npogecopa Qizuxu, 0OIUMAHHA NOCAOU NPOhecopa Mamemamuxu
001liMaNHs nocaou npogecopa Mamemamuxu; OCIinjieHHs: Ha 0OHe OKO

OCJINJIeHHsl Ha 00He 0KO,; 3anpouterts 00 bepnincvkoi akademii

3anpowenns 0o bepnincvroi akademii; nogepuenns 0o Canxkm-Ilemepoypea
nosepnenns 0o Canxkm-Ilemepoypea;, ocmamoune ocninienns

ocmamoyHe OCNINIeHHS, CMePMb Yepe3 KPOBOBUIUB ) MO30K

Jlnst motaHHs aCOLIaTUBHUX 3B’ SI3K1B MIXK TIOJIISIMH Ta TTOHSATTSMH, 110 JOTIOMAararoTh 3p03yMITH
KOHTEKCT KOKHOT MOJIi1 (JOPMY€ETHCS TPOMIIT:

Ha ocnosi mexcmy 6Gioepagii Jleonapoa Eiinepa 3natiou konyenmu, nos’si3ani 3 KONCHOI
nodier. Bugedu pezynomam y ¢hopmami: "noodis;nowammsa”. I1ooii 6yno eusnaueno suwe:
HApoOUBCs;, HABYAHHSA 8 2LMHA3II HABUAHHS 6 2IMHA3Il, HABUAHHA 8 YHieepcumemi HAGUAHHS 6
VHigepcumemi; OMpUMAHHI HAYKOBO20 36AHHSA Mazicmpa

Pe3ynprar onpamntoBaHHs TAKOTO IPOMIITY Ma€ TaKW BUTJIS:

Hapoouecs,; Lllsetiyapis, bazenv, cesaujenux
HasuaHus 8 2imHasii; mamemamuxa, Mozaunec bypkeapom
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Haguannsa 6 yrisepcumemi; yniepcumem Bazens, Hoeann Bepuynni

OMPUMAHHSL HAYKOB020 36aHHA Mazicmpa, ¢inocoghcobki noenaou, Hotomon, /lekapm
8I0M08a 810 Meon02ii; Meono2is, HayKa

npoghecopcoka nocaoa 6 Cankm-Ilemepoyp3si; ynisepcumem Canxm-Ilemepoypea, /lanienw
bepuynni

sHatiomemeo 3 Xpucmusinom I onvobaxom, meopis uucen, Xpucmusn I onb06ax
00itiManHs nocaou npogecopa gizuxu; Qizuxa, npogecop

00itiManHs nocaou npogecopa mamemamuxu; mamemamuxa, /{anienv Bepuynni
ocninients Ha 0OHe OKO; 6mpama 30py

s3anpowerts 00 bBepnincvkoi akaoemii; bepnincoka akademis, Dpiopix Beruxuii
nogepnenns 0o Cankm-Ilemepoypea; Cankm-Ilemepoype, nayka

ocmamoyHe OCNinIeHHs; NOBHA 8MPAama 30py

cMepmb yepes KpOBOBUNUE Y MO3OK, CMepMmb, MeOUYHUL CINAH

Takum ymHOM 13 Oiorpadii BU3HAYEHO KIFOUOBI IMOJIi Ta MOOYJAOBAaHO MEPEXKYy 3 BY3JIB i
3B’s3KiB. Bizyarizaiito 1iei Mmepexi Mo>kHa modauutu Ha Puc. 1.
CaHKr—I'IETepGy‘ayKa, AOCNIAHWK
BepniHcbka aKaA. Opigpix Benukuin BTpaTa 3op’qumﬁ cTaH

DCﬂiﬂﬂeHHH.@He 3A0poB'A n i i i pHeHHﬂ il KT-neTepGpra

3anpoLUEeHHsA 4,0 iHCbKOT a mii )
ocTaToy innexHs
)-‘l'l CMEpTb, n‘mwﬁ cTaH

BTp@opy
ocninnem@ ofHe OKO
MmaTemaTy KnagaHHa CakT-Ne r. Hayka
@ ‘ '{:%nepyrb uepes .anws y MO30K

akapemia, Ha.}.lOCIIiJl)KeHHH
matematmka, @enb BepHynni nosHa .ra 3opy
CMEpTh, M’«a npudrHa

obilimaHHa nocagu hecopa maTeMaTUKN

q)ismxa@?pcpecop
i

o6ilimaHHsA nocazgn in90¢ecopa chisnkm
thismka, {a_im/]auaHHn.;_;

Teg,piﬂ yucen, IQ%MHHJB.H@A\GQX
3HalloMcTBO 3 XpUCTUsiHom Monbabaxom

Teopia “M@‘aTeMa Lseiyapia, E{aaénb, CBALEHUK
Hayka, T@'Iﬂ, BUGIp

npochecopcbka rnoc B CaHKT-MeTepOypsi MaTemaTika, P{&Eerec BypKrapﬂTHa99A“BCH

yHiBEpCUTET Carucr-l'le@pra, [JaHiens BepHynni Binbcodicul not HblaToH, fekapT
CaHkT-MNeTepbypr, ecop, MaTemMaTika pevTeT BasdiiA i oranH BepHynni . . Wiseiilyapial Basens, Hayka
'@ 5 HaB4YaHHA B rimHasll -
BIAMOB Teonoril Koo 4
) HaB4YaHHA BEPCUTETI—
OTRUMAHHS HayKO 3BaHHs MaricTpa rivasin (Matematyika
Teon@«ayka @

Mal'iCTp, H@Mﬁ cwll_ﬁSECMTeT b IR, MaTemMaTnka
Pucynok 1 — CemanTnuHa Mepeska, o BiAMOBiae HaBeneHi y Bikimenii 6iorpadii Jleonapma
Ennepa

O1iHKa JOCTOBIPHOCTI JIJIsl YaCOBUX 3B’ SI3K1B MPOBOIUTHCS HA OCHOBI JIOTIKH XPOHOJIOT11 IO/TiH,
a JUIs acOIliaTUBHUX 3B’S3KiB — Ha OCHOBI KOPEKTHOCTI BiI0OpaKEHHsI TIOHATTS Y KOHTEKCTI MOIii.
Jnst 3aificHeHHs Takoi OIMIHKHM i KOHOT1 3 LLM 3aiiicHIOE€TbCST 3BEpHEHHS IIUISTXOM BBEIICHHS
MIPOMIITA!

Jns HaBeeHOi Mepexi, Jie By3/IaMH € ToJii 1 KOHIENTH 13 Oiorpadii JIOAMHU YHUCETHHO B
niamaszoni [0,1] ominm ii 3arajgbHy JOCTOBIPHICTB, Y3arajbHIOIOYM JOCTOBIPHICTH 3B’SI3KIB MIXK

89



MOTISIMH, KOHIIETITAMH, & TAKOXK KOHIIENITaMU Ta ToissMu. [Ticis iporo Hamail KOPOTKE MOSCHEHHS.

Ochb Mepexa:

HapoOuscs;, Ha84aHHs  2IMHA3IL

HABUAHHA 8 2IMHA3IL, HAGYAHHS 8 YHIgepcumemi

HABYAHHS 8 YHIgepcumemi, OMpPUMAHHS HAYKOBO20 36AHHI MA2icmpa

OMPUMAHHSL HAYKOBO20 36AHHS MA2ICMPA, 8i0M08A 8i0 Meoo2il

8iomosa 6i0 meonoeii; npoghecopcoka nocada 6 Canxm-Ilemepoyp3i

npoghecopcora nocada ¢ Canxkm-Ilemepoypsi; 3naiiomcmeo 3 Xpucmusaunom I onbodbaxom
3Havomemeo 3 Xpucmusinom I'onvobaxom, obiimanus nocaou npoghecopa hizuxu

Im. i

VY BiamoBins cucremu LLM HanaroTs cBOi OLIIHKH JOCTOBIpHOCTI, Hampukiaa, DeepSeec Bumae

Take:

s oyinku 3aeanbHoi 00CMOBGIPHOCMI CEMAHMUYHOT MepediCi, AKA CKIadacmvpcs 3 nooil ma
KOHYenmie, Mu BUKOPUCMOBYEMO 38AHCEHE CEPeOHE 3HAUEeHHs O00CMOBIpHOCMell 6CIX 38'A3Ki6 )
mepedici. Kooicen 368's130Kk mae c6iti 6azosutl koepiyicnm, sKutl 3anexicums 6i0 muny 36's3Ky (4acosuii-
CNPAMOBAHUL AOO acoyiamueHull).

Bazosi koeghiyienmu:

Yacogi-cnpamoeani 36'azku: Wiime=0.7
Acouiamueni 36'a3Ku: Wassoc=0.3

Oyinka 0ocmosipHocmi 368'a3Ki6:

1.

Yacosi-cnpamosani 36'a3Ku:
Hapoouscs; HasuanHs 6 cimnazii: P1=0.9
HasuaHHs 8 2iMHa3ii; Hasuanws @ yrnisepcumemi: P2=0.8
HABYAHHS 8 YHIGepCUmemi, OMpUMAaHHs HAYK0602o 36anns mazicmpa: P3=0.9
OMPUMAHHSL HAYKOBO20 36AHHS Mazicmpa, 8iomosa 8id meonoeii: P4=0.7
8iomosa 6i0 meonoeii; npoghecopcoka nocaoa 6 Canxkm-Ilemepoypsi: P5=0.8
npoghecopcoka nocaoa 6 Canxm-Ilemepoyp3i; 3uauniomcmeo 3 XpucmusHom
Tonvobaxom: P6=0.7
3Hatiomcmeo 3  Xpucmusnom lonvobaxom, obitimanua nocaou npoghecopa
Qizuku: P7=0.8
obllimanHs  nocaou npogecopa  izuxku, obitimanua nocaou  npoghecopa
mamemamuxu: P8=0.9
001tiManHs nocaou npogecopa mamemamuxu,; ociinients na ooue oxko.: P9=0.6
ocinjieHHs Ha oOHe oko,; 3anpouients 0o bepnincokoi akademii: P10=0.7
sanpoutentsi 0o bepaincoroi akademii; noseprenns 0o Cankm-Ilemepoypea: P11=0.8
nogeprenns 0o Canxm-Ilemepbypea;, ocmamoune ocninnenns: P12=0.7
ocmamouHe OClinients; cmepms yepes kpososunus y mozok: P13=0.9
AcouiamueHni 36'a3Ku:
Hapoouecsi; Llsetyapis, Bazenw, ceswyenux: P14=0.8
Hasuanns 6 2imuaszii; mamemamuxa, Hoeannec Bypxeapom: P15=0.9
HAB8YaHHs 8 yHigepcumemi, yHisepcumem bazens, Hoeann bepuynni: P16=0.8
OMPUMAHHA  HAYKOBO20 36aHHA Mazicmpa, ¢hinocogcoki noznsou, Hviomon,
Hexapm: P17=0.7
siomoea 6i0 meonozii; meonozisa, nayka: P18=0.8
npoghecopcorka nocaoa ¢ Canxkm-Ilemepoypsi; ynieepcumem Caunkm-Ilemepbypea,
Hanienv bepuynni: P19=0.7
snavomemeo 3 Xpucmusinom I'onvobaxom,; meopis uucen, Xpucmusan I 'onvodax: P20
=0.8
obitimanns nocaou npogecopa gizuxu; gizuxa, npogecop: P21=0.9
00itiManHs nocaou npoghecopa mamemamuxu, mamemamuxa, /laniens bepuynni: P22
=0.8
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— ocainjieHHsi Ha 00He oko; eémpama 30py: P23=0.7

- 3anpowienns 0o bepnincoxoi akademii; bepnincoka akademis, @piopix Beauxuii: P24
=0.8

— nogeprenus 0o Canxkm-Ilemepbypea,; Cankm-Ilemepoype, nayka: P25=0.7

- ocmamouHe ocninienus; nogua empama 3opy. P26=0.9

- cMepmb uepe3 KpoBoBUIUS ) MO30K, cmepmb, meduunuu cman. P27=0.8

- Hapoouscs; Llseiyapis, bazenwv, nayka: P28=0.9

—  HABYAHHA 8 2IMHa3IIl; cimHa3zisn, mamemamurka.: P29=0.8

—  Hasuauws 8 yHigepcumemi, yHigepcumem bazens, mamemamura: P30=0.9

- OMPUMAHHS HAYKOBO2O 38AHHA Mazicmpa, macicmp, Haykosutl cmynins: P31=0.8

- 8i0Mmo8a 8i0 meonocii; nayka, meoaoeis, eubip: P32=0.7

- mpoghecopcvka nocaoa 6 Canxkm-Ilemepoypsi; Caunkm-Ilemepbype, npogecop,
mamemamuxa: P33=0.8

- 3Hatiomcmao 3 Xpucmusanom I onvobaxom; meopis yucen, mamemamux: P34=0.9

- obitimanns nocaou npogecopa gizuxu; @izuxa, suxnadanms: P35=0.8

- 00iUManHs nocaou npoghecopa mamemamuxu, mamemamuxa, euxiaoants.: P36=0.9

— oclninjieHHsi Ha 00He 0KO,; OCainienHs, (izuune 30opos's: P37=0.7

- 3anpowenus 00 bepnincokoi akademii; akademis, nayka, docnioxcenns: P38=0.8

- nosepuennsi 0o Canxm-Ilemepoypea; Canxm-Ilemepbype, nayka, oocaionux.: P39
=0.7

- ocmamouHe ocninienus; empama 3opy, ¢izuunui cman: P40=0.9

- cMepmb uepe3 KpoBoBUIUS ) MO30K, cmepmb, meouuna npuyuna: P41=0.8

Obuucnenns 3a2aibHoi 00CMOGIPHOCMI:

13 41
P(G) = ZWtime ) Pl + Z Wassoc -P; |/41~0.76.
i=1

i
j=14

3acanvha 0ocmogipHicms cemanmuunoi mepedici cmanosums npubausno .76, wo exazye Ha
documsb BUCOKY 0ocmosipHicmb 0Oioepaii. Binbwicms 38'a3Ki6 Mmawoms 6UCOKY UMOGIPHICHIb
00CmMOoGIpHOCMI, 0COOIUBO  YACOBI-CAPAMOBAHI  38'3KU, AKI 8i000paMCardmov  XPOHOJOSIYHY
nocnioosHicmsb nNooill. AcoyiamusHi 38'a3Ku MAKONC MAOMb GUCOKY OOCMOBIPHICIb, WO C8I0UUMDb
NpO peedaHmHiCmy KOHYenmie 00 nooitl.

BuchHosku

VY uiit poboti Oyna po3pobieHa METOAOJOTiS Ta CTBOpeHa iH(opMaIiiiHa TEeXHOJOTis s
BUSBJIEHHS Ta BepHudikauli HenpaBauBuX (axTiB y Olorpadisx Bikineaii, mo O0a3yeTbcs Ha
BUKOPUCTAaHHI BEJIMKUX MOBHMX MOJIEJIEH 1 CEMAaHTUYHOTO HETBOPKIHTY. 3alpONOHOBAHMM ITiX1]
J03BOJISIE:

1. TloOynyBaTu 1eTajIbHy CEMAaHTHYHY MepesKy Oiorpadii, opicHTOBaHY Ha XPOHOJIOTiYHY

NOCJiIOBHICTH MO/l Ta 10JaBaHHS peJIeBAHTHUX KOHLENTIB.
2. OWiHUTH JOCTOBIPHICTH OKpeMHX 3B'AI3KIB Ta BCi€l Mepeki B LiTOMYy 32 10NMOMOI0I0
NPOMMNTIB.

3. BuxkopucroByBaTH pi3Hi BeJHMKI MOBHI MOJeJi ISl He3aJ1eKHOI OIHKHU Oiorpadii Ta

¢opmyBaHHs "'polo BipTyaIbHUX eKcrepTiB''.

4. Y3araJbHUTH pe3yJbTATH OWIHKH PIi3HHUX MojJe/eldl Ta HAJATH 3arajbHy OLHKY

pocTtoBipHOCTI Giorpadii.

HaykoBa HOBH3HA poOOTH MOJISTAE Y HACTYITHOMY:

1. Bmnepuie 3anponoHOBaHO METOJMKY MOOYIOBUM CEMAaHTUYHOI Mepexi Oiorpadiit 3 aBoma

THIIAMH 3B’ 3KIB MK HOJISIMHA T4 KOHI[EIITAMH.
2. VYmepmie 3acTOCOBaHO KOHIICMIIIO "pOro BipTyallbHUX eKcmepTiB" it Bepudikarii
TEKCTOBUX JaHUX y OiorpadiyHUX CTATTSX.
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3. Busnaueno uu¢poBi KpuTepii OLIHKH JOCTOBIPHOCTI SIK OKpEMHX 3B’SI3KiB, TaK 1 BCi€i
MepexXi B IIJIOMY

4. Po3po0JIeHO METOMOJIOTII0 OI[IHKK JOCTOBIpHOCTI, 1m0 moeanye LLM Ta ceMaHTHYHHIA
HETBOPKIHT.

5. BmpoBamkeHo MoJieNb iHTETPaIbHOT OI[IHKH, SIKa BPAXOBY€E BaroBi KOe(ilieHTH YaCOBUX Ta

acolllaTUBHUX 3B A3KiB.

Kpim TOro, 3amponoHOBaHMU MiAXiJ MOK€ OyTH BUKOPUCTAHUH Ui aBTOMAaTH30BaHOI
Bepudikamii ¢akTiB y BIAKPUTHX JDKepesax. MeTonuka A03BOJISIE IBHUIKO 1IeHTU(]IKYBaTH
NOTEHIIITHO MaHIMyJIATUBHI JJaHi, 0 € aKTyaJIbHUM JJISl )KYPHAIICTUKH, ICTOPUYHUX JTOCIIKEHb 1
60poTHOM 3 Ae3iH(opMali€ro.

VYHIKaIbHICTh METOJly TAaKOXK MOJISITAa€ B 3aCTOCYBAaHHI arperoBaHoi OIIHKH JJOCTOBIPHOCTI, 110
BpPaxoOBYE€ pe3yJIbTaTH PI3HUX MOBHHX MOJIeJIeH, 110 3a0e31medye O1IbI BUCOKY TOYHICTh Ta CTIHKICTh
JI0 MOYJIMBHUX MOMWJIOK OKpeMuXx mojened. Llel miaxin 103BoisiE YHUKHYTH YIIEPEIKEHOCTI, 110
MOX€ BHHUKHYTH 4Yepe3 crenudidHi oOMe)eHHs KOXHOT OKpeMOoi Mojel, Ta 3abe3rneuye OiIbII
Ha/liiHY NepeBipKy (aKTiB.

3anpornoHoOBaHa METOJMKA JIMOHCTPYE JI€BICTh Yy BHSBJICHHI MOTEHIIHHUX HENPaBIMBHX
¢axTiB, TiABHIIYIOYM AOCTOBIpPHICTH iH(OpMamii y BIIKpUTHUX JKepenax. Bona  BimkpuBae
MEPCIIeKTUBH ISl aBTOMAaTHU3allii mepeBipku iHGopmMarlii y BIIKpUTHX JKepenax, 30kpemMa Bikinenii,
Ta MOXKe OyTH aJlanTOBaHa JUIsl aHATI3y 1HIIUX BHUJIIB TEKCTOBUX JIAHUX.

Cnucok nocuJIaHb.
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VJIK 004.8

Ma3zypeus O.B., OBuapyk O.M., (Xmervnuyvxuii nayionanonuii ynieepcumem, m. XmeabHUybKul,
Ykpaina)

ATAI'HOCTYBAHHA ITPOABIB HIOCTTPABMATHYHOI'O CTPECOBOI'O PO3JIAY
3A HEHPOMEPEXEBHUM AHAJII30M TEKCTOBOI'O KOHTEHTY

Anomauia: 3anpononosano nioxio 0o 0iacHOCMy8aHHs NPOAGIE NOCMMPABMAMUYHO20 CIPECOBO20
PO371a0y 3a HelipoMepexCcesuM aHANi30M MeKCMO08020 KOHMeHmYy, AKull 3abe3neuye mpancgopmayiro 8xXiOHUxX
Oanux y euensioi mekcmy 6 pe3yibmam y ueisdi oyinku umosipnocmi nposgie IITCP y xowmenmi
Kopucmyeayis. Po3pobnena apximexmypa HeupoHHOI Mepedici noKa3ana 3Hayne NOKpAWenHs pe3yibmamia
NOPIGHAHO 3 IcHylouumu auanozamu. llicna nasyawmHa mooleni Ha 3aNPONOHOBAHOMY HAOOpI OaHux 6Y10
ompumaro mouricme nonao 85%.

Knrouoei cnosa: nocmmpasmamuyruil cmpecogutl po3iao, HeUpornHa mepedica, 00pobKa npupooHoi
MO8

Abstract: Approach to diagnosing manifestations of post-traumatic stress disorder using neural
network analysis of textual content is proposed, which provides the transformation of input data in the form
of textual data into a result in the form of an assessment of the probability of manifestations of PTSD in user
content. The developed neural network architecture showed a significant improvement in results compared to
existing analogues. After training the model on the proposed data set, an accuracy of over 85% was obtained.

Keywords: post-traumatic stress disorder, neural network, natural language processing

[TocTanoBka mpobiemMu

Ha 11 ocTanHIX moii, sIKi BUKJIMKAIOTh 3HAYHHHA CTPEC, TAaKMX SK BIMHU, KatacTpopu 4u
colianbHi KOH(IIKTH, CIOCTEPIra€Thcsi 3pOCTAaHHS BHUMAJKIB IOCTTPABMATUYHOTO CTPECOBOTO
posnany (ITTCP) cepen nacenenns [1, 2]. TpamumiiiHi miaXoau 10 JIarHOCTHKU YaCTO BUSBIISIOTHCS
HEI0CTaTHbO €()EeKTUBHUMM, OCKUIBKHM MOTPeOyrOTh Oe3l0ocepeHhOr0 KOHTAKTY 3 MAl[lEeHTOM Ta
TPUBAJIOTO Yacy JJIsl OLIHKU HOro cTany.

VY 3B’s13Ky 3 THIM, IO TEKCTOBA 1H(POpMAIIisl CTa€ Jeaalli JOCTYHIIIOK, BUHUKAE HEOOX1THICTh
y CTBOpPEHHI METOOJIOTii (hOpMYyBaHHS HaBYAJBbHUX HAOOpIB JaHUX, sIKa 3a0€3MEYUTh BHUCOKY
TOYHICTh Ta YYTIAUBICTb Mojenell a0 TekcroBux nposiBiB IITCP [3]. Lle no3Bonauth He nuiie
HiABUIIUTH €EKTUBHICTh IarHOCTUKH, ajie i CIIPUATHME CBOEYACHOMY BTPYYaHHIO Ta MiITPUMII
0ci0, K1 MepeXUau TpaBMaTH4HI MoAil. B ymMoBax MIBUAKHX 3MiH Yy COL[IaJIbHO-TICUXOJIOTTYHOMY
CEpEe/IOBUIIll BUKOPUCTAHHS HEUPOHHUX Mepex s BusiBieHHs o3Hak [ITCP crae BaxkmuBuM 1
aKTyaJbHHUM 3aBIAaHHSM, SIKE CIIPSMOBaHE Ha 3a0e3Me4YeHHs IU(PPOBOTo MCUXOJIIOTIYHOTO 100poOyTY
CyCHUIBCTBA.

Takum YMHOM, akTyaJlbHUM € NHUTaHHS aBTomaTu3amii miarHoctuku [ITCP Ha ocHOBI
TEKCTOBOTO KOHTEHTY, 3a0e3Meuyoun MpH LbOMY CTIHKICTh 10 MOMMIOK y po3pizHeHHi [ITCP ta
IHIIMX MCUXIYHMX po3nadiB. L[poro MokHa JOCATTH 3a JOMOMOIOI0 HEHPOHHUX MEpEexX LUIIXOM
CTBOpPEHHSI HAaBUAJIbHOIO HAOOpPy JIaHUX, 110 BKJIIOYA€E TEKCTHU 3 SICKPABO BHUPAKEHUMH INPOSIBAMU
IITCP sk 1inbOBY KaTeropito, a Tak0X TEKCTH 3 1HIIMMU IICUXIYHUMHU PO3JaJaMU Ta 0€3 HUX — SIK
KOHTPOJIbHY TPYITY.

AHaui3 ocTaHHIX MMyOJTiKalii

Hapasi mmpoko 3acTOCOBYIOTHCS Taki HHU(POBI IHCTPYMEHTH, SK BIpTyalbHa PEalbHICTh,
Helipoindex, HOCUMI TPUCTPOi, MOOLITHHI JTOAATKH Ta MAIIMHHE HABYAHHS JIS JIarHOCTUKH Ta
nikyBarHsi cumnroMiB [ITCP [4]. Anami3z gochipkeHb TOKa3aB, MO0 BIPTyallbHA PEabHICTH €
e(l)eKTI/IBHI/IM MeToioM JikyBaHHs 6oiioBoro I[ITCP, Toxi sk pe3ynbTaTH BUKOPUCTAHHS MOOUTBHUX
JONATKIB 1 HEHPOhINOeKy 3aIMIIAIOTECS OOMeKeHHMH 4epe3 HeBENHKI BUOIPKU Ta METOOOTIYHY
HEOJHOPIIHICTh. MOJIeni MallIMHHOTO HaBYaHHS JIEMOHCTPYIOTh MOTEHIIIaJ Y BUSIBIIEHHI CHMITOMIB
[ITCP 3a nanumu 31 cMapT@OHIB 1 HOCUMHUX MPUCTPOIB, OJHAK JUIS iX KIIHIYHOTO 3aCTOCYBaHHS
noTpiOHa cTaHaAPTH3AIlIS POIEAYP 300py JaHUX 1 MOJICITFOBAHHS.

Hocnipkenns [5] posrasgae MOBY sSK MOXIMBHK jiarHocTuyHuid Oiomapkep IITCP,
BUKOPUCTOBYIOUHM JaHi Bix 148 ocib, siki cranmu xepTBamu TepakTiB y Ilapmxki 13 mucromana 2015
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poky. [HTepB 10, TpOBeIeH] Yepe3 5-11 MicsITiB mics MoAii, OXOIUTIOBAIIN PECITOHACHTIB 31 CXOXKHUMHU
COIIaIbHO-€KOHOMIYHUMH YMOBaMH. Y  JOCHIIKEHHI 3aCTOCOBYBalacs MUKAUCITUIUTIHAPHA
METO/OJIOTISA, sKa IOE€IHyBaja IMCHXIATPil0, JIHTBICTUKY Ta OOpOOKYy NpUpOAHOI MOBH ISt
BCTaHOBJICHHS 3B 513Ky MK MOBHUMH ocobnmBocTsamu 1a [TTCP.

Pesynbratu mokazamm, mo kiaiHivaui ncuxiatp gocsar AUC 0,72 npu aiarHocturi [ITCP, mo
3icTaBHO 3 pesyibraTamu aHkeryBaHHs (AUC = 0,80). Mojenp MallMHHOTO HaBYaHHS IOKa3alia
AUC 0,69, a monens rnubokoro HaBuaHHs — AUC 0,64. YV nociiKeHHI TaKOX BPaxOBYBAJIUCS
3MilTyBanbHi (PaKTOpH, 10 BIUIMBAIOTH HAa PE3yJbTaTH, BCTAHOBIIOBAIUCS 3B’S3KH Mi)K MOBHUMH
0co0IMBOCTSIMU Ta cumnTtoMamu DSM-5, a Takok o€ JHyBaIuCsi aBTOMaTH30BaH1 METO/IU 3 IKICHUM
aHaJi30M.

Merta pO6OTI/I Ta IIOCTaHOBKA 3aB/1aHb

Meroro pobOTH € JIarHOCTYBaHHs IpPOSBIB MOCTTPABMATHYHOTO CTPECOBOIO po3naly 3a
HEHPOMEPEIKEBUM aHAIII30M TEKCTOBOTO KOHTEHTY, 110 3abe3reuye MePETBOPCHHS BXiAHUX JJAHUX y
BUIJISAJII TEKCTY B pE3yJIbTAT y BUTIISAI OLiHKY HMoOBipHOCTI posiBiB IITCP y koHTeHTi KOpuCTYyBayiB.

Bukman ocHOBHOTO Marepiary

MeTon  JiarHOCTYBAaHHS — MPOSIBIB  MOCTTPABMATHYHOTO  CTPECOBOTO  pO3Jaay  3a
HEHPOMEPEIKEBUM aHaTi30M TEKCTOBOTO KOHTEHTY 0a3yeThCs Ha HaBYaHHI HEWPOHHOI Mepexi 3
BUKOPHUCTAHHSM CIICIIAIbHO CTBOPEHOTO HABYAILHOTO HaOopy manux. Lleii HaOip 3abesmedye
BUCOKY CTiliKicTh 10 moMuikoBoro BusiieHHs [ITCP udepe3 3minryBaHHs 3 IHIIMMH HNCUXIYHUMHU
posnagamu. st aHamizy TekcTiB Oylia 3acTOCOBaHAa HEMpPOHHA MEpexa, IO BKIOYA€E KBAHTOBHM
mrap. CxeMa apxiTEeKTypu Mepexi AJs [1arHOCTyBaHHS MPOSBIB MOCTTPABMATUYHOTO CTPECOBOTO
pO3iaay 3a aHaIi30M TEKCTOBOTO KOHTEHTY IPEJCTaBlIeHa Ha pucC. 1.

3anponoHOBaHUN MiAXiJ A0 JIarHOCTYBAaHHS NPOSBIB MOCTTPaBMAaTHYHOTO CTPECOBOTO
po3iaay 3a HelpoMepeKEeBUM aHalli30M TEKCTOBOI'O KOHTEHTY 3a0e3reuye TpaHchopMallito BXIIHUX
JAHWX y BUTJIIAI TEKCTY B PE3yJibTaT y BUTIAAL OLiHKK HMmoBipHOCTI mposiBiB [ITCP y konTeHTi
KopucTyBadiB. Ha mepmiomy erami 311HCHIOETBCS TMoOMepenHss 00poOKa TEKCTiB, BKIIOYAIOUM iX
TOKeH13a1110. TeKCTH nmepeBipArOThCS Ha JIOBXKHMHY 1 HasiBHICTh JaHuX. llpu mpomy 30epirarorbes
PO3JIIOBI 3HAaKW, €MOA31 Ta IHII €JIeMEHTH, SKI MOXXYTb MICTUTH 3Hadylly iH(QOpMaLioo it
BusieiieHHs1 [ITCP. Ilpouec TokeHi3alli BUKOHYEThCA 13 3aCTOCYBaHHSIM TOKEHI3aTopa, IO
BUKOPHCTOBYBABCSI I11]] YaC HaBYaHHS MO/IEJII.

Ha ngpyromy erami mpoBOAMTHCS aHaNi3 TEKCTY 3a JOMOMOTOK KOHTEKCTHO-OPIEHTOBAHOI
HelipoMeperki Ha OCHOBI apXiTeKTypH TpaHchopmepa, cripsiMoBaHoi Ha BusiBiieHHs npossis [ITCP.

Bxigauit mwap (Input) mozmeni Bu3zHauae Qopmar gaHux 1 mae posmipHicts 2000, mio
BIJIMIOBiIa€ TOBXHUHI BEKTOpa CIiB Juist aHami3y. Ha pucyHky nei map He BimoOpaxeno. [Tomgampii
H1apy BKJIIOYatoTh MIbHI (Dense) mapu, 1o 3’ €IHyI0Th yC1 HEHPOHH MONEPEIHBOT0 HIapy 3 KOKHUM
HEHpOHOM MOTOYHOrO. Dropout-map BHNAIKOBO J€aKTUBYE MEBHY KIUIbKICTh HEHPOHIB y mpoleci
HaBYaHHS, [0 3MEHINYE pPH3UK TIIePEHAaBYaHHS MOJIENI, 30KpeMa JUIsl JTAHOTO JOCIiKEHHS
BUKOPHUCTOBYETHCS 3HaueHHs 70%.

Buxigamit map Dense 13 oJHUM HEHpPOHOM BHUKOPHCTOBYETHCS AJIS 3ajadil Kiacudikauii Ha
JIBa KJIacH. 3aCTOCOBY€EThCA (DYHKIIIS akTUBAIli]l Sigmoid, 1110 cTucKae pe3ynpTar y Mexax Bijg 0 mo 1,
10 1/1eaTbHO MIAXOAUTH JIJIs1 MOJIeNOBaHHs WMoBipHOCTI TiposiBiB [TTCP.

Jl11s 3a0e3nedeHHs TOYHOCTI IIarHOCTUKY Ta 3MeHIIeHHs iiMoBipHOCTi 3mimryBaHHs [ITCP i3
CUMIOTOMAaMH 1HIIMX MCUXIYHHUX 3aXBOPIOBaHb OYJIO CTBOPEHO HaBYaJbHUM HAOIp JaHUX. Y HHOMY
I[IJIbOBA KaTEeropisi MICTUTh TEKCTU 3 BUCOKUM piBHeM MposiBiB [ITCP, a KoHTpoibHA — BKIIIOYAE SIK
tekcT 6e3 o3Hak [ITCP, Tak 1 TekCTH, OB’ s13aH1 3 IHITUMHU TICUXIIHUMH PO3JIaIaMHU.

dopmMyBaHHS IILOTO HAOOPY 3AIHCHIOBAIOCS IIISAXOM KOMOIHYBaHHS Ta BIIOOpY JaHHX 13
HasBHUX 0a3 [6], Takux sk «AyaPTSD» [7] ta «HumanStressPrediction» [8], po3mimenux Ha
iatdopmi Kaggle.
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Puc. 1. ApxiTekTypa Heiipomepeski 1jisl aHAJII3y TEKCTOBOI0 KOHTEHTA /sl AiarnoctyBaHHs nposisis [ITCP

Input shape: (None, 2000) | Output shape: (None, 32)

Dropout

Input shape: (None, 32) | Output shape: (None, 32)

Input shape: (None, 32) | Output shape: (None, 2)

Dropout

Input shape: (None, 2) | Output shape: (None, 2)

Input shape: (None, 2) | Output shape: (None, 32)

Dropout

Input shape: (None, 32) | Output shape: (None, 32)

Input shape: (None, 32) | Output shape: (None, 1)

EdexTuBHICTh METOY Al1arHOCTYBaHHS MPOSBIB NOCTTPAaBMaTHYHOTO CTPECOBOTO PO3IATy 3a
HEHpOMEpEKEBUM aHAI30M TEKCTOBOI'O KOHTEHTY Oyjla OIliHEeHa 3a JIOMOMOIOK XMapHOI
mwiatdopmu Google Colab. Ha pucynkax 2 i 3 npoaemonctpoBani ROC-kpuBi Jj1s1 BOX BapiaHTIB
napametpiB Dropout — 60% 1 75%.

True Positive Rate

Puc. 2. ROC-kpusi HelipoHHOT Mepe:ki, BiicoTok iHridyrounx Heiiponis 60

Receiver Operating Characteristic

0.0

” —— ROC curve (area = 0.87)

T T T
0.0 0.2 0.4 0.6 0.8
False Positive Rate

10
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Receiver Operating Characteristic

True Positive Rate

e —— ROC curve (area = 0.88)

0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Puc. 3. ROC-kpuBi HeiiponHoi Mepe:ki, BiicoTOK iHriOylounx HeiiponiB 75

[Ticns waB4yaHHS MoOJeNl Ha 3ampoloHOBaHOMY HaOopi AaHMX Oynud OTpUMAaHi Taki
pesynbratu: TouHicTh (Accuracy) — 0.85, Tounicte nmepenbadenp (Precision) — 0.87, 1 mioma mix
kpuBoto (AUC) — 0.88. HaBuanns 3aidicHioBaniocs npotarom 100 enox i3 3acToCyBaHHSAM MEXaHI3My
paHHIX 3YIUHOK I YHUKHEHHS TIepeHaBuaHHs Ta 30epekeHHs Haikpamoi Bepcii mozeni. Po3mip
HaByajabHOI maprii (batch size) craHoBuB 64, a ciioBHUK oxorutroBaB 2000 TOKEHiB.

BUCHOBKU

Po3pobriena apxiTekTypa HEHpOHHOI Mepexi MoKaszaja 3HayHEe MOKpPAIEHHS pe3yJbTaTiB
MOPIBHSHO 3 ICHYIOUMMH aHanoramu. lle ocoOnuBo BaxknuBo s 3amau BusiBneHHs [ITCP y
TEKCTOBOMY KOHTEHTi. BCTaHOBIEHO MiJBHUILEHHS TOYHOCTI 1 3MEHIIEHHsS PU3MKY CIUTyTYBaHHS 3
IHIIUMU TICUXIYHUMH posniagamMu. OJHAK METOJ J1arHOCTYBAHHS MPOSIBIB MOCTTPABMATHYHOTO
CTPECOBOTO PO3JIajly 3a HEHPOMEPEKEBUM aHAII30M TEKCTOBOTO KOHTEHTY Ma€ MEeBHI OOMEKEHHS:
BIH 3aCTOCOBYETHCS JIMIIE JI0 TEKCTIB AHTJIINCHKOIO MOBOIO. lle oOMexeHHs MOKHa MO0JIaTH
[UISIXOM PO3IIMPEHHS HABUAIBHOTO HA0OPY JaHUX TEKCTaMH 1HIIMMU MOBAMH.

[Tomanbun gociiakeHHs: OyayTh 30CEpeKEeH] Ha pO3LIMPEHHI HA0Opy HAaBYAIbHUX JIaHUX 1
TECTyBaHHI aJIbTEPHATUBHUX HEHpPOMEPEKEBUX apXITEKTYyp VIS MiJBUIIEHHS €(EeKTUBHOCTI MOJIENi
Ta TOYHOCTI BUsiBieHHs cumnitomiB [TTCP.
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YK 004.4

MaptunoB A.1O., Pamiok IL.M. (Xmervnuyvkuti nayionanvuuii ynigepcumem, m. XmenbHUYbKUl,
Ykpaina)

INITYYHUA IHTEJIEKT SIK OCHOBA JIJISI PO3III3HABAHHSI BILIA IO
PAJIOCUT'HATYPI

Anomayin: Y cmammi npedcmagieni napy npocmux HetipoHHux mepexc 0Jia po3ni3Haeants padiocuzHaie no
muny Mooyaayii yu maninyaayii. Bubpaswiu kpawy i3 Hux mMu noKpawguny ii nNiOHALAWMY8aHHAM KilbKOCMI DiBHI8 uapie
ma ix napamempu. Takodxc 6yOemo 36epmamu ygazcy Ha 3ampedy8anuli 4ac OJid HAGYAHHA Mda pe3yaIbmamu 00CHI0HCEHD.

Knrouosnl cnosa: marninynayii, noKpawjeHHs, NiOHAIAUIMYSAHHS, KLIbKICMb Wapie, napamempu, 4ac HAYaHHs,
pe3yibmamu Q0CHIONCEHD.

Abstract: The article presents a pair of simple neural networks for recognizing radio signals by the type of
modulation or manipulation. Having chosen the best of them, we will improve it by adjusting the number of layer levels
and their parameters. We will also pay attention to the required time for training and research results.

Keywords: manipulations, improvements, fine-tuning, number of layers, parameters, training time, research
results.

Bceryn.

Yepes BenHKyY KUTBKICTh BUPOOHUKIB Ta THITIB BOopokuXx BIIJIA mocrae nmpobiiema po3mizHaTi
cBili-uyxuii BITJIA Ha ¢oni akTuBHHX OoMoBuX nid. Lle BinOyBaeThCs 3a YMOB, KOJIU MEepeBakHA
OUIBILICTD Cy4acHOT PO3BIJIKY Ta YpaXKeHHs BiI0OyBaeThes 3a paxyHok FPV-npownis [1-3]. BuznaunTu
tin BITJTA MoXHa 1 3a CEKTpaJbHUM PaJioOCHTHAIOM oreparopa [5] 4um BimeocurHamy camoro
BITJIA [6-9].

3anponoHOBaHMM miAXiA.

3anpornoHoBaHUIl MeToJ BusABIEHHs Bopoxkoro BIIJIA 3ampononoBanmii Bhnepuie. Bin
OXOILTIOE B 001 HUGPOBUM pamionpuiiMad, sSKuil MpuiiMae CUTHAIM KEpyBaHHs ollepaTropa 4
BiteocurHan camoro BIIJIA, koM’ roTep uu MiHI KOMIT'IOT€p Ha sIKOMy Oyje po3TalloBaHa cama
HEMpOHHA Mepexka 13 po3Ii3HaBaHHAM THUITy paJlioOCUTHANy Ta 1HIAUKATOp, KU OyJe CBIAUYUTH PO
HasBHICTH BITJIA.

VY mporeci MOmIyKy HEWpPOHHUX MEpeX Ui pO3Mi3HABaHHS paliOCUTHaNiB Oyio 100yTo
OCHOBHHUX II’SITh THUIIIB HEWPOHHUX MEPEHKMOKIMBUX JUIsl pO3II3HABaHHs padlocurHaiiB. [3 HuX
OyaeMoBHOpaTH ONTUMAJBHIITY 1 BXKE MOKpAIlyBaTH ii 3MiHOIO KIJIBKOCTI IIApiB Ta iX MapaMmeTpiB
METOJ/IOM TIepedopy.

Pozniznaru BIIJIA nianyeTbcest 3a HACTYITHUMH KPOKaMU:

bnok 1. HapuanHs 3a HaOOpOM JaHUX.

Kpok 1.1 3ammyckaeMo HEHPOHHI MepeXki Ta TPEHY€EMO 3T1JHO HAIIOro Habopa JlaHuX.

Kpox 1.2 BUBOAMMO pe3ynbTaT TPEHYBaHb y BUIJAI «MaTpulll IUTyTaHUHU». SIKIIO0
pe3yIbTaTH 33JI0BIBHI — MEPEXOUMO JI0 OJIOKY 2

bnok 2. OtpumyeMo cUrHai Aj1si IOPiBHAHHS

Kpoxk 2.1 Otpumyemo pagiocursai 3 edipy KepyBaHHs OlepaTopa YM BiJIEOCUTHAI 13 CaMOT0
BIITA

Kpoxk 2.2 TlpuBoauMo cUTHam y BiANOBIAHY GopMy JUIsl HEHpoOMepexi

bnok 3. BuBenieHHs pe3ysbTaTiB JUIsl IPUUHATTS pillleHb

Kpox 3.1. TlopiBHsHHS pe3ysbTatiB 13 0a3010 nanux mo tunaM BITJIA (mo xapaktepucTrukax
MOJYJIIB, SIKI MOKYTh BUKOPHCTOBYBATHCS B HUX)

Kpox 3.2. Buenenns iHdopmariii i3 IMOBIpHICHUM 3acTOCyBaHHsI eBHOTO TUIy BITJIA)
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Onuc JaHHUX.

3a ocHoBy Oyno B3sTo dataset«RadioML 2016.10A» 11 momynsiii, Oyno go0GaBieHO e
OJIMH TUT MOAYJIsALii «rpoTokod LoRa» Ha sikomy 1 mpaItoroTh Baxkki it npuayiieHHs BITIA.

YTBOpeHuit HoBuH dataset Mae HACTYIHI 3HAYCHHS:

KinbkicTh 3pa3kiB Moaysiiii 12;

Kinbkicts 3pa3kiB B omaomy Bui 1000;

Po3mipHicTs kOMIIoHeHTa 128x128;

Kinbkicts piBaiB SNR 20;

3aranpHa KUTBKICTh 3pa3kis 240000.

IIpouneaypa HaBYaHHA MOAEJII.

Hapuaemo Helipomepexxy 3a HaOopom naHux. Ilicias TpeHyBaHb NMpOTHAIW Iie pa3 Habip
naHux, skuit 0yne Ha Bei 100% cxmagatucs i3 HaB4aHHS 1 TIIBKW HAIl BX1IHUNA CUTHAT 3aITMCAHUMA
nupoBUM IpUiiMadeM MMOJaBaTUMEMO Ha BX1J Ha PO3Mi3HABaHHS J0 SKOI MOAYJIAIIT BITHOCUTHCS
el 3amucanuii pamiocurHan. Ha Buxoni oTpumMaeMo HMOBIpHICHI 3HAYEHHS IOTO CUTHANY Yy
BiJICOTKOBOMY BIJHOIIEHHI A0 TUIY MOIyJswii. [Ti3HilIe MOpiBHIOEMO XapaKTEPUCTUKU 1CHYIOUYHX
MOJYJIIB Tepenadi pagiOCHTHANIB 3 HAIUM PO3IMI3HAHUM CHUTHAJIOM 1 OTPUMYEMO HMOBIpHICHE
3aCTOCYBaHHs MEBHOTO TUITY MepeaaBaya Ha jociigxyBanomy BILIA.

Omnwucani 5 CTpyKTyp HEHPOHHUX MEPEXK SKi OyIeMO JTOCIiHKYyBaTH:

1. BASIC = Conv2D(64, size=(1, 3), activation="relu’, input_shape=(H, W,
C)),Dropout(0.5)), Conv2D(16, size=(2, 3), activation="relu’), Dropout(0.5), Flatten(), Dense(128,
activation="relu’), Dense(len(modulation), activation="softmax’), Dropout(0.5)]

2. DEEP = [Conv2D(64, kernel_size=(1, 3), activation="relu’, input_shape=(H, W, C)),
Dropout(0.6), Conv2D(64, kernel_size=(2, 3), activation="relu’), Dropout(0.6), Conv2D(80,
kernel_size=(1, 3), activation="relu’), Dropout(0.6), Conv2D(80, kernel_size=(1, 3),
activation='relu’), Dropout(0.6), Flatten(), Dense(128, activation="relu’), Dropout(0.5),
Dense(len(modulation), activation="softmax")]

3. LSTM = [ZeroPadding2D(0, 2), Conv2D(64, (1, 5), activation="relu’), Dropout(0.2),
ZeroPadding2D((0, 2), data_format="channels_last’), Conv2D(64, (1, 5), activation="relu’),
Dropout(0.2)(conv_2), Concatenate(axis=2)([drop_1, drop_2]), list(np.shape(merge)), concat_n,
concat_h, concat_ w, units = np.shape(merge), dimensions = int(concat_h)*int(concat_w),
Reshape((units,  dimensions)),  Bidirectional(LSTM(64)), Dense(128, activation="relu’),
Dense(len(modulation), activation="softmax")]

4. CNN = [ZeroPadding2D(0, 2), Conv2D(64, (2, 3), activation="relu’),
data_format="channels_last', input_shape=(H, W, C)), Dropout(0.5), Conv2D(80, (1, 3),
activation="relu’, data_format="channels_last"), Dropout(0.5), Flatten(), Dense(128, activation="relu"),
Dense(len(modulation), activation="softmax")]

5. VTCNN2 = [Reshape([1]+in_shp, input_shape=in_shp)), ZeroPadding2D((0, 2)),
Convolution2D(64, (2, 3), activation="relu", initializer="glorot_uniform’), Dropout(0.0005),
ZeroPadding2D((0, 2)), odel.add(Dropout(0.0005), Flatten(), Dense(128, activation="relu’,
kernel_initializer="he_normal’), Dropout(0.0005), Dense(len(modulation),
kernel_initializer="he_normal’), Activation('softmax’)

Reshape([len(modulation)])]

HeiiponHi Mepexi TpeHyeMo y CyKymHOCTI ycix piBHiB SNR a He okpemo. SNR = [-20, -18, -
16, -14, -12, -10, -8, -6, -4, -2, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18].
Pe3sysibTaTH.

Jns veiiponnoi mepexi Tuny «DEEP» na 50 enox npuBeneni B pucyHkax 1 — mo To4HocTi,
PUCYHOK 2 - IO BTpaTax, 3 — MaTpHIL IUTyTaHUHU.
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Pucynok 3 — Matpuus miyTaHuHd HelpoHHOT mepexi « DEEP» 3a 50 - enox.
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Tabmuus 1 — Tunu HEHPOHHUX MEpeX BUPAKEH1 Y BIZICOTKOBOMY MPEJCTAaBICHHI PO3Ii3HaBaHb
PaalOCUTHAIB MMIC]s TPEHYBaHb 3a KUTBKICTIO €TIOX.

Tam BASIC DEEP LSTM SNN VTCNN2
Mepexi
5 8,05 16,54 16,49 16,11 34,06
10 8,13 - 31,97 16,19 48,06
20 8,06 - 54,61 16,15 47,55
50 9,3 44,49 56,5 20,13 52,10
500 - - - - 50,46

Tabmuus 2 — Tunu HEHPOHHUX MEpeX BUpakeH1 y oTpebi B yaci (CeKyHIH) Al TPEHYBaHb 3a

KUIBKICTIO €I10X.

Ton BASIC DEEP LSTM SNN VTCNN2
Mepexi
5 387 1206 1001 200 120
10 694 - 2085 346 278
20 1375 - 8109 762 514
50 7344 19698 18249 1844 5284
500 - - - - 20303

Tabmuus 3 — [Toka3zHuk 3aTpedyBaHOTO Yacy 0 ii KIIBKOCTI €ToX, JJIs TPEHYBaHb 110 TUITY

HEHPOHHOI Mepexi.

Tom BASIC DEEP LSTM SNN VTCNN2
Mepexi
5 1,29 4,02 3,67 0,67 0,4
10 1,16 - 3,48 0,58 0,46
20 1,15 - 6,76 0,64 0,43
50 2,45 6,57 6,08 0,61 1,76
500 - - - - 0,68

ITo pesynpraTax HaBeneHux B Tabmuui 1 6aunmo, mo «BASICy» Tun HeHpOHHOT Mepexi 1Mo
TOYHOCTI PO3Mi3HABaHHS PAJIOCUTHAIIB JOCUTh Majla a TOMY HE€ MHIAXOIUTh AJSA IMOJAJIBLIMX

JOCII/IB.

[To pesynprarax mpuBeaeHux B Tabmuimi 2 6auumo, mo «DEEP» tum HelipoHHOI Mepexi
3abupae 6araro 4acy JJis TpeHyBaHb, a TOMY ii BIIKHAAEMO 13-3a2 HEJOCTATHHOI MOTY>KHOCTI HAIIOTO

oOJaTHaHHSL.

Jns  HeMpoHHOI
3aTpedyBaHOT0 Yacy BiJ KIJIbKOCTI €MoX (3riAHO TabuLi 2) ane 1 picT po3Mi3HABAHOCTI PailOCUTHAITY

(3rimHO TabmwMi 1).

Mepexi

THITY

«LSTM»

MH CIIOCTEPITa€EMO TE€OMETPUYHHUN pICT

Jliia HefipoHHOT Mepeski THILY «SNN», 3riiHO Tabuu1ll 2, MU CIIOCTEPIraEMO JIIHIMHY PIBHICTh
3aTpe0yBaHOro 4acy Ui TPEHyBaHb ajie BIJICOTOK JOCUTh Mayini. MOXIJIMBO NpU TpeHyBaHHI Oiis
1000 g1 5000 Mu 100’ emMoOcCs B1ICOTKOBOTO 3HAUEHHSI OLIbIIIE 32 75 ajie MOKH HeI0CTaTHS MOTYKHICTh
HAIoro o0JaJHaHHs HE J1a€ 3MOTY II€ IEPEBIPUTH.

Jlia HeiiponHoi mepexi tTuny « VTCNN2y, 3rigHo tabauui 3, Mu 6a4uMO aHOMAJIIIO 1110 1€
3Ha4YeHHs OinbIe ogHoro. [ToTpiGHO KOCHIANTH 1€ AeTalbHIIIe.

B3siBiu 3a ocHOBY 1ielt Tun Helipomepexi Takuid ik « VTCNN2» 13 HanamTyBaHHSIM IIapiB
MOYKHA JIOCSTTH Kpamux pe3ynbTariB. Ock mapy 3MiH IIapiB Ta pe3ysibTaTh oouucieHs Ha 50 enox
MpeACTaBICH] B TabuIIi 4.

Tabmuns 4 — cTpYKTYpH 1IapiB JJIsl HEUPOHHOT MEPEexI.

Hassa mozeni SI1818|193|3 g. § %
ZeroPadding2D((0, 2)) + | H | H |+
Convolution2D(64,(2,3),Activati 2 - ol ol
on="relu",initializer='glorot_unif | + | + | £ | + | & | 3 | S |8 | 3
orm’) '@
Dropout(0.0005) + |+ |+ v+ ]+ |+ |+
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ZeroPadding2D((0, 2)) + |+ |+ |+ |+ ]+ ]+ ]+ ]+
Dropout(0.0005) + + |+ | + | + | +
Flatten() + + |+ | + | + | +
Dense (128, activation="relu’, . . el ,lglyld
initializer="he_normal’) N Q| b | S
Dropout (0.0005) |+ |+ |+ |+ |+ + |+
Flatten() + |+« +]+1+1+7]+
Dense(128, ctivation="sigmoid’, sl el s legl s lg]yld
initializer="he_normal’) oY | b |8
Dropout (0.0005) + | o+ |+ |« | « | + |+
Flatten() + |+ |+ + |+ | ] + ]+
De_ns_e_(1_28, activation="relu’, N sl ,lgly §
initializer="he_normal’) oY | b |8
Dropout (0.0005) | + | + | + |+
Flatten() ¥ |+ ] + | + | +
Dense (128, activation="relu’, gl ,.l8ly|S
initializer="he_normal’) N Q| b | S
Dropout (0.0005) + |+
Flatten() + |+

Dense (128, activation='sigmoid',
initializer="he_normal’)
Dropout (0.0005) S I I O T O O O
Dense (len(modulation),
initializer="he_normal’)

Activation + |+ |+ |+ +|B585858%
(‘softmax’) hngdondondons
Reshape ([len(modulation)]) | + | + | + | + | + | + | + [ + | +

model.compile (loss="categorical
_crossentropy',optimizer='adam’)
model.build (input_shape=
(None, H, W, C))
summary()

+
+
+
+
+
+
+
+
+

Pesynbrar posmizHaBaHHS y Y%

Yac 3arpauenuii s HaBuanus B
CeKyH/1ax

7556 [51,42| +
6872 |53,88| +
133 |40,78| +
306 |44,44| +
4808 (35,47| +
2670 (33,01 +

1887 |52,37| +
6444 |51,46| +
1334 18,38 +

BusHaunnu onTuMainbHy JUIS HAIKX [TOJAIBIINX HAIIPALFOBaHb.
BucHOBKMH.

3a ocHOBY JuIs Hamoi HEMpPOHHOI Mepexi Bi3bMEMO HEMpOMEpexky 13 TaKOl CTPYKTYpPOIO
mrapiB mijg Ha3zBoro «00». Bigcotok posmnizHaBanHs Oubmmil Big 50 Ta 3aTpeOyBaHuil yac cepeaHiit
BITHOCHO 1HIIIHUX.

[Toganbmia po6ota Oyne 30cepemkeHa Ha 300pi XxapakTepucTHK nepenaaviB aist BIUJIA Ta
iXH1 0COOJIMBOCTI KepyBaHHs (4aCTOTH Ta THUIM MPOTOKOJIIB, MOJIYJIALI1, MOKIMBICT CTPUOKIB 1O
YaCTOTi, MOXKITUBICTB TiICTPOIOBAHHS CUTHAITY JIO PIBHS IIYMiB TOIIIO).
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MeabnukoB O. 10., Jlenucenko B. O. (/Jonbacvra oepoicasna mawunobyoiena axaoemis, M.
Kpamamopcwk, Vrpaina)

ITPOI'HO3YBAHHSA 3MIHU PIBHA JIICOBOI'O BKPUTTA OKPEMOI'O JIICHUIITBA
3A TOITOMOT O10 CYITYTHUKOBOI'O CEPBICY LANDSAT TA HITYYHUX
HEMPOHHUX MEPEX

Anomayin: Posensinymo npoonemy po3paxyHKy piGHs JiCUCMOCTI, Y MOMY YUCH — NPOSHO3YBAHHA 3MiHU
JICOB020 GKPUMMSL 8 OKPEMOMY JiCHUYmsi. 3pobneno nopisnauus aicucmocmi 3a 40 poxie (1984 — 2024) cenuwa
Cnisaxiska I3romcbko20 pationy Xapkiecvkoi obnacmi 3 SUKOPUCMAHHAM CYRYMHUK06020 cepsicy Landsat. s
3aCMOCY8aHHsL MEMOOY WMYUHUX HEUPOHHUX MEPENC CPOPMOBAHO NepeniK 6XIOHUX Pakmopis, Wo Micmams NOKAZHUKU
Ha 00paHiti OinsHyi Yy 08a nonepedHi poKu ma Yi e NOKA3HUKU HA CYCIOHIX OLIAHKAX (KOJICHe I3 3A8AHMANCEHUX
3006pasicenb 00panoeo nichuymsea po3noodineno Ha 9 keadpamis). CmeopeHo cKpunm Moo npocpamy8anHs ma aHaiizy
Odanux R, AKuil 8UKOHYE pPO3PAXYHKU, O00360JA€ BUBHAUUMU HAUKPAWY apPXimeKmypy HeupoHHOI Mmepedci ma Oinvuu
epexmugHull Memod ii HaguanHsa 01 neeHo2o Habopy danux. Hasedeno po3paxynox OuHamiku upyoKu Ha 0Opanomy
Keaopami (npocHo3 Ha OcmaHuill piKk 3abe3neuye noxubky 6 9%). Ilicis yucieHHUX 3anycKie CKpunmy 3 ’siCO8aHO, WO
HauKpawuil pe3yriomam 3a0e3neyye nepcenmpon 3 0OHUM NPUXOBAHUM WAPOM 3 080MA HEUPOHAMU Y HbOMY.

Kniouosi cnoea: nicucmicmo, npoeno3yeanus, cynymuuxoei oawi, Landsat, netiponni mepeoici, nepcenmpo,

OUHAMIKA BUPYOKU, APXIMEKMYPA MePediCl, MEMmoO HABYAHMSL, AHANI3 OAHUX, NPOSPAMYBaHHs R.

Abstract:The problem of calculating the level of forest cover, including predicting changes in forest cover in a
separate forestry, was considered. A comparison of forest cover over 40 years (1984—-2024) of the village of Spivakivka,
Izyum district, Kharkiv region, was made using the Landsat satellite service. To apply the artificial neural network
method, a list of input factors was formed, containing indicators on the selected site in the two previous years and the
same indicators on neighboring sites (each of the downloaded images of the selected forestry is divided into 9 squares).
A script was created in the programming and data analysis language R, which performs calculations and, allows
determining the best architecture of the neural network and a more effective method for its training for a certain data set.
A calculation of the dynamics of felling on the selected square is presented (the forecast for the last year provides an
error of 9%). After numerous runs of the script, it was found that the best result is provided by a perceptron with one
hidden layer with two neurons in it.

Keywords: forest cover, forecasting, satellite data, Landsat, neural networks, perceptron, deforestation
dynamics, network architecture, training method, data analysis, R programming.

B Vkpaini nuraHHg 30epexeHHs JICIB PErylloeTbcs HU3KOK 3aKOHOAABUMX akTiB [l].
CTBOpeHHsS Ta BHUKOPHCTAHHS CIEI1ali30BAHOTO IPOTrPaMHOro 3a0e3leyeHHs JUIsl OL[IHIOBAHHS
JicUCTOCTl, 00poOieHHs 1H(OpMAaIlil PO JICOBI HACAIKEHHS Ta BUSIBJICHHS HECAHKIIOHOBAHOT
BUPYOKHU JIICY, MPOTHO3YBaHHS 3MIHM JIICUCTOCTI B OKPEMOMY JICHHUIITBI MOXE€ CTaTH CYTTEBUM
MOMIYHUKOM B IIbOMY HAaIlpPSIMKY.

ABTOpHU pO3pOOMIIN TIporpamMHe 3a0e3MeUeHHS IS PO3PAXyHKY JIICUCTOCTI Ta 00OpoOIeHHs
iHpopMaIlii npo JicoBi HacapkeHHs [2] Ha mpuknani cenuia CriBakiBka B [3F0MChbKOMY paioHi
XapkiBcbkoi obmacri [3]. Takoxk Oyi10 3po0JieHO MOPIBHSAHHS JICHCTOCTI 32 HU3KY POKiB [4—5], mis
yoro Oymo Bukopuctano pecypc Global Forest Watch (Bceciths sicoBa Bapta) [6] — BeOg01aTOK
JUIsI MOHITOPUHTY JIICOBOTO MOKPUTTS IUIAHETH B peasibHOMY MacmTall 4yacy. Hepomikom mporo
Be010JaTKy € HasiBHICTh CYITyTHUKOBHX 3HIMKIB TUIbKH 32 13 pokiB, 10 2013 poky.

ABTopu pobotu [7] mis [DOCHIDKEHHS OOCSTIB MOPYIIEHh HAaMETy JEPEeBOCTaHIB B
Vkpaincekux Kapmarax ynpomosxk 1984-2016 pp. BHKOpUCTaNIM YacoBl psiId  300pa)keHb,
OTPUMaHMX 13 CYITyTHUKOBUX 3HIMKIB MpOEKTy «Landsaty 13 3acTocyBaHHSM 3aco0y Bi3yamizarii
«TimeSync». ABTOpH po3paxyBaiadl CEPEIHIO JICHUCTICTh NIl BCIET JOCTIIKYBaHOI TEpPHUTOPIi Ta
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HaBeNM Tepeslik OCHOBHUX IMOPYIIEHb, IO Oylu TOB’S3aHI SK 3 AHTPOINOTEHHMMH, TaK 1 3
NPUPOTHIUMHU YNHHUKAMH.

TakuM 4uHOM, OYJIO NPHUHATO PILICHHS BUKOPUCTAaHHS pecypciB [8-9] mnst orpumanHs
300pakens [Ipuaonenbkoro sicHuirea 3a 40 pokis (1984 — 2024) — puc. 1.
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Pucynok 1 — ani mono cenuma CriBakiBka

Y pob6oti [5] 3a momomororo cepicy [6] Bu3HAauYaBCs BiCOTOK BUPYOKH, SIKHi Ha CepBici
BiZJOOpakaBcs POKEBUM KOJIBOPOM. 3apa3 MOTpiOHO BU3HAYATH BiJICOTOK 3€JIEHOTO KOJIBOPY:

_ Fgreen .
V = ———100% 1)

~

e V — BiICOTOK HAaCHYEHOCTI,
Pgreen — KITTBKICTB TIKCEIIB 3€JICHOTO KOJIBOPY;

P, — 3aranbHa KiTBKICTB TIKCEINIB HA 300pa)KeHHI.

OCKiBbKY HacC IKaBUTh HE TUTBKY 3arajibHa CUTYaIlis Y JTICHUIITBI, aJle 1 CUTYallis Ha OKPEeMUX
JIISTHKaX, KOXKHE 13 3aBaHTAXXEHUX 300pakeHh MOYKHA PO3IUINTH Ha KBAJIpaTH, a MOTIM aHaJI3yBaTH
JaHi 10 KOKHOMY KBajapary. sl KOKHOTO KBaapaTy OyJio pO3paxOBaHO HACHYCHICTH 3EJICHUM
KOJILOPOM Ta 30epeskeHo y Tabmuiii (puc. 2).

[TocTae muTaHHS MPOTHO3YBaHHS 3MIHU JIICOBUX HACa/HKEHb Ha 00paHiil AUTSHII, TOOTO 3MIHU
BijicoTka JicuctocTi. le MoxxkHa 3pobutn pizHuMH nuisxamu. [lo-mepiie, 3acTocyBaTH 3BHYalHI
piBHSHHS perpecii (JiHilHe, ToIHOMIAJIbHE, eKCTIOHESHITIAIBHE TOI0) OKPEMO J0 3HAYeHb KOKHOTO
KBaJpaTy, a TAKOX JIJIs1 YChOTO JTICHUITBA. [HIINH UTAX — (hOpMyBaHHS TIEPEIIKY BXITHUX (PaKTOpiB.
Sk BxigHI akTOpH MOKHA PO3TISAIATH, MO-TIEpIIe, MOKA3HUKN HA OOpaHiil TUISHIN Yy MONepeaHi
poku (Hexail 1ie 3Ha4yeHHs1 Oy/e JOpIBHIOBATH JIBOM), a MO-APYTe, Il K MOKA3HWKH Ha CYCIJTHIX
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ningakax. OCKiIbKY MU MaeMo 3HaueHHs 1o 9 (0..8) kBagpaTax 3a TpU POKH, TO KUIBKICTh (haKTOpiB
Oyne nopiBHIOBaTH 27: 26 BXiqHUX Ta | BUXiAHUIA (3HAYCHHS HA JOCITIKYBAaHOMY KBaJparti):

Y =F\X X Xiqg, X X

Oom1’ *0m2’' 11’ ~“11m1 *33m2 2)

[Ticns 06poOku marmx 3 puc. 1 3a hopmyioro (2) oTpuMaemMo pe3ybTaT, 0 HABEICHO HA
puc. 2.

Cycin Cycin Cycia Cycin Cycin Cycia Cycin Cycin Cycin
Keanpat-  Keagpam-  Cycia R cyoin Cycin o Cycin A A Cycin Cycin A Cydn yein Cycin e _ Cyon Cycin
woawrr T e pcdway DL vl S el Iy bl bt g R b T o B ey PR b (SR
Pe3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Y XO0m1 X0m2 X11 X1iml | X11m2 X12 X12ml | X12m2 X13 X13m1l | X13m2 X21 X21ml | X21m2 X23 X23m1 | X23m2 X31 X31m1l | X31m2 X32 X32m1
1986 54,75 1 60,74 89,24 96 91,41 98,87 100,61 99,77 91 93,69 91,14 59,02 83,31 61,1 87,36 91,99 88,49 10,9 36,3 26,91 29,38 60,74

1987| 88,31 54,75 1 96,61 89,24 96 100,29 98,87 100,61 95,75 91 93,69 83,92 59,02 83,31 93,87 87,36 91,99 84,31 10,9 36,3 76,57 29,38
1988 93,22 88,31 54,75 95,84 96,61 89,24 100,72 | 100,29 98,87 95,91 95,75 91 89,87 83,92 59,02 96,04 93,87 87,36 70,04 84,31 10,9 92,15 76,57
1989| 89,62 93,22 88,31 93,87 95,84 96,61 100,34 | 100,72 | 100,29 93,62 95,91 95,75 88,1 89,87 83,92 92,63 96,04 93,87 78,58 70,04 84,31 79,99 92,15
1990 8557 89,62 93,22 95,64 93,87 95,84 100,59 | 100,34 | 100,72 95,75 93,62 95,91 78,06 88,1 89,87 92,51 92,63 96,04 67,62 78,58 70,04 69,4 79,99
1991| 89,87 85,57 89,62 95,5 95,64 93,87 100,14 | 100,59 | 100,34 95,95 95,75 93,62 86,52 78,06 88,1 94,6 92,51 92,63 63,93 67,62 78,58 84,42 69,4
1992| 88,24 89,87 85,57 95,75 95,5 95,64 100,02 | 100,14 | 100,59 96,25 95,95 95,75 86,07 86,52 78,06 94,87 94,6 92,51 65,85 63,93 67,62 82,79 84,42
1993| 78,92 88,24 89,87 92,79 95,75 95,5 99,75 100,02 | 100,14 94,62 96,25 95,95 71,21 86,07 86,52 92,2 94,87 94,6 63,84 65,85 63,93 59,68 82,79
1994| 61,04 78,92 88,24 88,69 92,79 95,75 99,39 99,75 100,02 91,88 94,62 96,25 60,74 71,21 86,07 87,81 92,2 94,87 31,91 63,84 65,85 44,37 59,68
1995| 84,55 61,04 78,92 92,72 88,69 92,79 99,5 99,39 99,75 95,07 91,88 94,62 74,04 60,74 71,21 94,48 87,81 92,2 59,63 31,91 63,84 76,84 44,37
1996 82,34 84,55 61,04 93,33 92,72 88,69 99,25 99,5 99,39 94,91 95,07 91,88 77,79 74,04 60,74 92,27 94,48 87,81 49,19 59,63 31,91 67,03 76,84
1997 96,90 82,34 84,55 95,43 93,33 92,72 99,62 99,25 99,5 96,04 94,91 95,07 93,46 77,79 74,04 95,66 92,27 94,48 81,23 49,19 59,63 78,95 67,03
1998| 74,11 96,9 82,34 90,98 95,43 93,33 98,24 99,62 99,25 92,15 96,04 94,91 69,65 93,46 77,79 93,49 95,66 92,27 40,09 81,23 49,19 43,37 78,95
1999| 59,43 74,11 96,9 85,93 90,98 95,43 96,74 98,24 99,62 87,61 92,15 96,04 62,53 69,65 93,46 90,28 93,49 95,66 32,23 40,09 81,23 53,39 43,37
2000 82,50 59,43 74,11 90,43 85,93 90,98 97,76 96,74 98,24 86,88 87,61 92,15 80,35 62,53 69,65 95,55 90,28 93,49 77,84 32,23 40,09 71,17 53,39
2001| 83,83 82,5 59,43 91,99 90,43 85,93 97,63 97,76 96,74 87,65 86,88 87,61 92,67 80,35 62,53 93,26 95,55 90,28 84,94 77,84 32,23 86,02 71,17
2002| 62,98 83,83 82,5 87,25 91,99 90,43 96,29 97,63 97,76 85,62 87,65 86,88 63,73 92,67 80,35 92,33 93,26 95,55 54,23 84,94 77,84 57,39 86,02
2003| 97,58 62,98 83,83 96,95 87,25 91,99 98,76 96,29 97,63 95,09 85,62 87,65 97,6 63,73 92,67 97,47 92,33 93,26 94,17 54,23 84,94 95,68 57,39
2004 95,64 97,58 62,98 93,58 96,95 87,25 96,81 98,76 96,29 89,42 95,09 85,62 95,12 97,6 63,73 96,56 97,47 92,33 79,83 94,17 54,23 87,18 95,68
2005 95,64 95,64 97,58 93,58 93,58 96,95 96,81 96,81 98,76 89,42 89,42 95,09 95,12 95,12 97,6 96,56 96,56 97,47 79,83 79,83 94,17 87,18 87,18
2006 93,65 95,64 95,64 92,61 93,58 93,58 95,79 96,81 96,81 87,79 89,42 89,42 95,57 95,12 95,12 96,11 96,56 96,56 63,12 79,83 79,83 86,54 87,18
2007 81,14 93,65 95,64 93,03 92,61 93,58 94,71 95,79 96,81 85,69 87,79 89,42 80,48 95,57 95,12 93,55 96,11 96,56 86,66 63,12 79,83 85,62 86,54
2008| 68,72 81,14 93,65 90,05 93,03 92,61 92,94 94,71 95,79 82,61 85,69 87,79 76,28 80,48 95,57 91,29 93,55 96,11 35,39 86,66 63,12 55,27 85,62
2009 68,72 68,72 81,14 90,05 90,05 93,03 92,94 92,94 94,71 82,61 82,61 85,69 76,28 76,28 80,48 91,29 91,29 93,55 35,39 35,39 86,66 55,27 55,27
2010 68,72 68,72 68,72 90,05 90,05 90,05 92,94 92,94 92,94 82,61 82,61 82,61 76,28 76,28 76,28 91,29 91,29 91,29 35,39 35,39 35,39 55,27 55,27
2011 76,55 68,72 68,72 73,7 90,05 90,05 89,39 92,94 92,94 59,05 82,61 82,61 78,58 76,28 76,28 92,97 91,29 91,29 79,29 35,39 35,39 82,27 55,27
2012| 87,16 76,55 68,72 73,72 73,7 90,05 90,66 89,39 92,94 61,17 59,05 82,61 92,81 78,58 76,28 94,05 92,97 91,29 60,29 79,29 35,39 73,47 82,27
2013| 64,54 87,16 76,55 70,24 73,72 73,7 87,7 90,66 89,39 57,33 61,17 59,05 66,94 92,81 78,58 90,21 94,05 92,97 63,32 60,29 79,29 68 73,47
2014| 62,66 64,54 87,16 71,55 70,24 73,72 89,03 87,7 90,66 57,58 57,33 61,17 65,85 66,94 92,81 88,83 90,21 94,05 38,44 63,32 60,29 47,65 68

2015 75,46 62,66 64,54 74,88 71,55 70,24 90,71 89,03 87,7 61,01 57,58 57,33 84,62 65,85 66,94 92,92 88,83 90,21 79,96 38,44 63,32 85,17 47,65
2016| 67,87 75,46 62,66 74,92 74,88 71,55 90,32 90,71 89,03 60,24 61,01 57,58 72,52 84,62 65,85 91,34 92,92 88,83 36,88 79,96 38,44 61,19 85,17
2017 86,23 67,87 75,46 76,05 74,92 74,88 92,11 90,32 90,71 64,86 60,24 61,01 86,16 72,52 84,62 94,41 91,34 92,92 85,89 36,88 79,96 84,96 61,19
2018| 73,50 86,23 67,87 75,6 76,05 74,92 91,45 92,11 90,32 61,58 64,86 60,24 70,94 86,16 72,52 91,11 94,41 91,34 66,15 85,89 36,88 78,11 84,96
2019 73,74 73,5 86,23 77,77 75,6 76,05 89,48 91,45 92,11 63,68 61,58 64,86 73,29 70,94 86,16 92,74 91,11 94,41 46,16 66,15 85,89 56,35 78,11
2020| 68,77 73,74 73,5 76,66 77,77 75,6 91,75 89,48 91,45 65,83 63,68 61,58 76,12 73,29 70,94 90,82 92,74 91,11 44,53 46,16 66,15 73,59 56,35
2021 73,65 68,77 73,74 77,61 76,66 77,77 91,72 91,75 89,48 66,51 65,83 63,68 75,21 76,12 73,29 90,75 90,82 92,74 55,29 44,53 46,16 61,9 73,59
2022| 82,59 73,65 68,77 71,82 77,61 76,66 88,85 91,72 91,75 64,04 66,51 65,83 89,96 75,21 76,12 88,63 90,75 90,82 80,69 55,29 44,53 78,49 61,9
2023 86,21 82,59 73,65 80,37 71,82 77,61 91 88,85 91,72 73,2 64,04 66,51 85,75 89,96 75,21 93,8 88,63 90,75 91,04 80,69 55,29 76,07 78,49
2024| 76,12 86,21 82,59 75,15 80,37 71,82 63,32 91 88,85 33,81 73,2 64,04 82 85,75 89,96 83,9 93,8 88,63 65,26 91,04 80,69 70,62 76,07

Pucynok 2 — O6po0ineHi JaHi HACUYEHOCTI 3€JIEHUM KOJIbOPOM

Taky 3amady NporHO3yBaHHS MOKHA PO3B’A3aTH PI3HUMU MaTE€MaTHYHMMHU METOJlaMH,
HaNpUKiIaj, METo10M O0ararogakToOpHOI JTiHIHHOI perpecii 800 METOIOM IITYYHUX HEMPOHHUX MEPEK
[10].

JUnist IpoBeIeHHs pO3PaxyHKiB 32 000Ma MeTo1aMu 0yJI0 BUKOPUCTaHO MOBY ITpOrpaMyBaHHs
Ta a”ani3y naHux R [11]. CTBopeHO CKpHUINT, IKUI BUKOHYE pO3paxyHKU MOOYJOBOIO JiHIN perpecii
Ta IITYYHOI HEHPOHHOI MEpEXi, a TAKOXK J03BOJII€ BU3HAUUTH HAMKpally apXiTeKTypy HEHpOHHOT
Mepexi Ta OuTbIl epeKTUBHUN METO/ ii HaBUaHHS [yl IEBHOTO HA0OpY JaHUX.

[Ticns yncneHHUX 3aMmycKiB CKPUNTY JUI pI3HUX MapaMeTpiB KIJIbKOCTI MPUXOBAHUX IIAPIB Ta
KUJIBKOCTI HEHPOHIB y HUX 3’SCOBAHO, 110 HaMKpaluii pe3ynpTar 3abe3nedye NepcenTpoH 3 OAHUM
NPUXOBaHUM LIAPOM Ta JIBOMA HEHpOHaMH y HbOMY (puc. 3).

PesynbpTaTu po3paxyHkiB, 110 3BeeHi 10 Ta0. 1, cBiIuaTh PO BHCOKY KOPEIALIIO JAaHUX TS
BU3HAYEHHS BIJICOTKA JICy, sikui Oyne BuUpyOyBaTHCs Ha BU3HAYEHOMY KBaJpaTi. 3aCTOCYBaHHS
I[LOTO TIEPCENTPOHY IS IPOTHO3YBAHHS HAa OCTAHHIH PiK MOKa3aiao moxuoky B 9% (Tabdu. 2).
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Pucynok 3 — ApxiTekTypa HEHPOHHOI Mepexi

Tabnuus 1 — Pe3ynbraTi pOrHO3yBaHHs TECTOBOI MHOXKHHU

N Y Res error

5 85.57 84.20 | 0.032065

6 89.87 90.78 | 0.021238

17 62.98 62.90 | 0.001956

19 95.64 91.57 | 0.095026

20 95.64 94.12 | 0.035584

25 68.72 68.18 | 0.012687

26 76.55 71.90 | 0.108633

27 87.16 84.33 | 0.065978

33 73.50 71.78 | 0.040224

36 73.65 71.96 | 0.039438

38 86.21 88.29 | 0.048462

Tabmuus 2 — Pe3ynbraT MpOrHo3yBaHHs Ha oOpanomy kBajpati MLP 26x2x1

Year Y Res error
2024 76.12 78.19 0.09667
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BUCHOBKHA
HaBeneno maremaTuyHy MO/ENb Ta pO3PaXyHKU MPOrHO3YBaHHS 3MIHM PiBHS JICHCTOCTI 3a

JIONIOMOTOK0  CYIYTHHKOBOTO cepBicy Landsat i MoBu mporpamyBaHHs Ta aHamizy JaHUX R.
CdopmoBano mepenik BXigHUX (DaKTOpiB, IO MICTATh MOKAa3HUKM Ha OOpaHid IUIAHII y 1Ba
TIOTIEPETHI POKH Ta IIi X TMOKAa3HWKMA Ha CYCIIHIX JTUISHKaxX. 3ajady MpPOTHO3YBaHHS PO3B’SI3aHO
METOIOM IITYYHUX HEHPOHHUX Mepex. CTBOPEHO CKPHUIIT MOBOIO IIPOTPaMyBaHHsI Ta aHAIII3Y TaHUX
R, sikuii BUKOHY€E PO3paxyHKH IIUM METO/IOM, a TAKOXK JI03BOJISIE BU3HAUNTH HAHKpaIy apXiTeKTypy
HEHPOHHOT Mepexi Ta O1TbII eeKTUBHUNA METO 11 HaBUYaHHS JJIs IEBHOTO Habopy Aanux. HaBeneno
pO3paxyHOK AWMHAMiKH BHUPYOKHM Ha OOpaHOMy KBajpaTi (IIPOTHO3 Ha OCTaHHIM piK 3abe3neuye
noxuOky B 9%). 3’sicoBaHO, 10 HAWKpAIIUi pe3ynbTar 3a0e3ledye NEepCenTpoH 3 OJIHHUM
NPUXOBaHUM IIAPOM 3 TIBOMA HEUPOHAMH.
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YJIK 004.8
MouruanoBa M.O.(XuenvHuybkuil HayionanvHuil ynisepcumem, M. XmenvHuybkui, Yxpaina)

BUSBJIEHHS OB’€KTIB ITIPOITAT'AHJAU Y TEKCTOBUX ITOBIZOMJUIEHHAX
3ACOBAMM OBPOBKHU ITPUPOJHOI MOBMU I3 BI3YAJIBHOIO IHTEPIIPETAIIEIO
PE3YJIBTATIB

Anomauin: 3anpononosano memoo GuABNEeHHS 00 '€KMi8 NPONazaHou 6 MeKCMOsUX NOBIOOMIEHHAX
Helipomepedcesumu 3acodbamu 06poOKU NPUpOOHOI MOBU i3 8I3yalbHOIO IHmMepnpemayicio pe3yiomamis. Biominnicmio
MEmMoOy € PO3UUPEHHA MHONCUHU 00 €KMI8 NPONA2aHOU 3d PAXYHOK 000A8AHHA 8APIAHMIE IX COBECHUX NOOAHL Md
BUKOPUCIAHHS KOHIMEKCIHUX GIKOH OISl 8UAGNEHHS 36 513Ki6 Midic nputiomamu ma o6’ ekmamu nponazanou. Le 0ossonae
ROKpawumuy pe3ynomamu GuAGIeHHs i 3abe3neuumu Gi3yanbhe npeocmasients o0’ €kmie nponazanou, ix cio8ecHux
NOOGHb I BANCIUBUX 38 A3KI6 MIdC HUMU. EKCnepumMeHmanbHo 008e0eHO epekmugnicms nioxody, sxuil 3abesneuye
pe3yabmamu, wo Kopenioioms 3 eKCnepmuuMu OYiHKamu, i 00360JA€ Gi3yaibHO cnocmepicamu 00 ekmu 6naugy ma ix
36’A13KU 8 PAMKAX NPONALAHOUCHICLKUX NPULIOMISE.

Knrwuosi cnosa:l 106’ ekmu nponazanou, nputiomu nponazanHou, UAeleHHs Nponazanou, 0opobka npupooHoi
MOo8U

Abstract: Proposes method for detecting propaganda objects in text messages using neural network tools for
natural language processing with visual interpretation of the results. The difference of the method is the expansion of the
set of propaganda objects by adding variants of their verbal representations and using context windows to detect
connections between techniques and propaganda objects. This allows to improve the detection results and provide a
visual representation of propaganda objects, their verbal representations and important connections between them. The
effectiveness of the approach, which provides results that correlate with expert assessments and allows visually observing
objects of influence and their connections within the framework of propaganda techniques, has been experimentally
proven.

Keywords: propaganda objects, propaganda techniques, propaganda detection, natural language processing

ITocTanoBKa npoodJieMu

lIponaranza, cipsiMoBaHa Ha MaHlnynﬂuuo pi3HEMH 00'€KTaMU [JIsl AOCSTHCHHS HOMITHYHIX,
COIIIAJIbHUX, CKOHOMIUHHX a00 KYJIbTYpHHX I[UJICH, € OJJHUM i3 HAaHOLIBIIMX BUKJIMKIB Cy4acHOCTI [1].
O06’exTamMu TIponaraHu € oco0u, TpyIH, opraH13au11 COIliaJIbHI BEPCTBH, a TaKOX SBHIIA abo
1HCTI/ITyI_l11 Ha SIKi CIIPAMOBaHI MPOMAraHAMCTChKI 3yCHIUIS 3 METOKO BIUIMBY Ha iXHIO CBIZOMICTb,
eMOllii, MOBEIHKY Ta CYyCNUIbHY AYMKY. Y Cy4YacHHUX _YMOBAX BaXKIIMBHM 3aBJIAHHAM € HE JIMIIIE
ABTOMATH30BaHE BUSBJICHHS MPOMATaHIMCTCHKUX MPUHOMIB, ale i BH3HAYCHHsS 00'€KTiB, Ha SKi
CHpPSIMOBaHI 11 TPUHOMHU, 3 BI3yaJIbHOIO IHTEPIIPETALIIEI0 PE3YIIbTATIB.

VY naHiii cTaTTi NPEACTABICHO METOJA BUSBIECHHSA O00'€KTIB MpoONaraHiyd B TEKCTOBHUX
MOBIJIOMJICHHSX 3aco0aMu 0OpOOKHM MPHUPOIHOI MOBH. BiIMIHHICTIO IIBOTO METOAY € PO3LIUPEHHS
MHOKMHU OO'€KTIB IpOMaraHjyd 3aBIsSKH [JOJABaHHIO BapiaHTIB IX CJIOBECHUX IOAAaHb Ta
BUKOPUCTAaHHIO KOHTEKCTHHMX BIKOH JJIsl BUSIBIEHHS 3B'A3KIB MK NpuUHOMaMu Ta 00'€eKTaMu
nponaranau. Lle m03Bonsie He TUIPKM TMOKPAIUTH pe3yJbTaTH BHSBIEHHS, ane i 3a0e3nednTH
Bi3yaJIbHE MPEJICTABIIEHHS 00'€KTIB MPOMAaraHau, iX CJIOBECHUX IMOJaHb Ta BAXKJIMBUX 3B'SI3KIB MIXK
HUMH. EKcriepuMeHTanbHO JOBEICHO €PEKTUBHICTH MiAXOMYy, KU 3a0e3medye pe3yibTaTH, MO0
KOPENIOI0Th 3 KCIEPTHUMH OLIIHKAaMH, 1 TO3BOJISIE Bi3yalbHO CIIOCTEPIraTH 00'€KTH BIUIMBY Ta iX
3B'SI3KM B paMKax MPONaraHAuCTChbKUX MPUHOMIB.

3anponoHoBaHuil miaxig kopemtoe 13 Llumsimu cramoro possutky IIPOOH Ta crnpuse
aBTOMaTH3allii IMpolecy BUSBIEHHS Ta Kiacudikamii nponaraHay, 3a0e3Medyyloud IOBHI,
IHTepIpPETOBaHI Ta 3pO3YMUIl pe3yabTaTh. 30KpeMa, 3aCTOCYBaHHS METOIIB O0OpOOKH MPUPOIHOT
MOBHU JUI BUSBJICHHA Ta Kiacudikaiii TeXHIK 1 00'€KTiB mpomaraniu crpuse aocsrHeHHio Llimi
ctasioro po3Butky OOH Nel6 nuistxom mMigBUIIEHHS MPO30pOCTi 1H(POpMaILIMHOrO MpocTopy Ta
3MIIIHEHHS 1HCTUTYUIHHOI noBipu. Takox mne miarpumye Lline cramoro po3sutky OOH Ned,
PO3BHBAIOYU MEIarpaMOTHICTb 1 KpUTUYHE MHUCIICHHS Cepell HaCeNeHHs, 1110 JloromMarae e(h)eKTUBHO
OPOTHUIIIATH Jie3iH(popMartii.

AHaJi3 ocTaHHiX myOJikauii

€ 1Ba OCHOBHUX TIJIXOH 10 iMeHTU(DIKAIT Mponaranan: 4epe3 po3Mi3HaBaHHS IMEHOBAHUX
cyrocreit (NER) ta knacuikariro nosimomiens [2]. Posrnsgatoun nponaranny sik 3amauay NER,
BUHHUKAE CKIJIAQJHICTh Yepe3 Te, 10 TEKCTOBI ()parMEeHTH 3 MPOIAraHAMCTCHKUMHU elIeMEHTaMHU
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3a3BMYai A0BIII, HIX THMOBI 00’ekT NER (Hanpukman, iMeHa uu Ha3BH), 1 MOXKYTh CKJIQaTUCS 3
KUIBKOX JCCSTKIB CIiB. Y IOCHTIKEHHI [3] aHAMI3y€eThCS BIUIMB JIOBKUHU TEKCTOBUX CETMEHTIB HA
TOYHICTh BUSBJICHHS MpONAaraHad, L0 MiATBEPIKYE 3POCTaHHS CKJIAIHOCTI 13 30UIbIICHHAM
JIOBXKMHHM Jiana3oHiB. byno BUnpoOyBaHO KilbKa MOMYyJISPHUX METOMAIB IS i€l 3a/1a4i, BUMIPSHO,
HAaCKUIBKH JI0Ope BOHM BiOOpakarOTh PO3IMOJILT JIOBXKUHHM TEKCTOBUX (DparMeHTIiB, a TaKOX
3aMPOIIOHOBAHO TMIXi[ 13 aJaNTHBHUM PIBHEM 3TOPTKH, SIKHil IIOKpalllye 0OMIH iHQOpMALi€I0 MiK
BigganieHuMu ciaoBamu. Lle pimeHHs crpusie OUTBII TOYHOMY BiJHOBJICHHIO JOBXKHMHU TEKCTy 0€3
BTPATH 3arajibHOi e()eKTUBHOCTI.

Y paMKax IOCIiIKCHb, OPIEHTOBAHUX HA BUSBIICHHS nponaraHu Ha pIBHI JTOKYMEHTIB,
aKIEHT 3pO0JICHO HA OIIHI[ TEKCTYy SIK LITICHOTO eJieMeHTa 1 Horo okpemux peueHb [4]. s
n00y0BU 03HAK BUKOPHCTOBYIOTBCS PI3HI MCTOH: CTATUCTHYHI IHIMKATOPH, BGKTOpI/I3aI_I1$I TEKCTY
[5], miHrBicTHYHE MapKyBaHHs, & TAKOK PO3Ii3HABAHHS TPUIEPIiB, TAKUX SIK a0OCOJIFOTHI 3aiiMEHHUKH
a00 IMICHWIIFOBAIBHI CJIOBA.

ExcniepumeHTanbHi pe3ysibTaTH IPOJAEMOHCTPYBAIIH, IO MOJIENb, 32CTOCOBAHA JI0 aHAJIi3y Ha
piBHI JoKyMeHTa, nocsrina TouHocti 0,943. Bonma 3morna mpaBuibHO KiacugikyBatu 6097
HEIpOMaralIuCcTChKkuX crarei 1 694 mpomaranmuctebki ctarTi. [liaxin, opieHTOBaHWN Ha aHami3
OKPEMUX PEUeHb, M0Ka3aB HIDKY1 Pe3ybTaTH: TOUHICTh ckiana 0,744. Bin ycmimHo i1eHTH(DIKyBaB
205 mnpomaraHaUCTChKUX pedeHb 1 1917 HemponaranaumcTchkux, mpore 731 crarTio Oyno
KJacu(ikoBaHO HEBIPHO.

AHani3 noB’s3aHuX poOiIT y cdepi BUABICHHS MPUHOMIB Ta 00'€KTIB MpOMaraHau BHUSBUB
HU3KY [poOaem. llo-mepiue, ICHye BIICYTHICT KOMIUIGKCHOTO aHAlli3y B3a€MO3B’SI3KIB MK
TEXHIKaMU Ta 00'€eKTaMu mpomaranau B Tekcrax. [lo-mpyre, Opakye y3arajlbHeHb JUIsi 00'eKTIB
MPOMAraH/u Ta iX anbTePHATHBHMX 3rajyBaHb. lIponaramya, ska BUSBIAETHCS TITBKH Yepe3 MOMIyK
IMEHOBaHHUX CYTHOCTEH, HE IEMOHCTPY€E CIPSIMOBAHOCTI TeXHIK. TakoX, TEXHIKH MPOMAaraHau, o
BUSBIISIIOTHCS HA PiBHI IOKYMEHTY, He Bi0OpaXkatoTh 00'ekTiB BIIMBY. [Ipy BUsABIIEHH] pomaraniy,
SIK 3aBJIaHHS TOIIYKY IMEHOBAHHMX CYTHOCTEH, 00'€KTH 9acTO MOJAIOTHCS BIACHUMH HAa3BaMH, IO
OXOIUTIOE TIUTAHHS «HAa KOro?», OJHAK HE OXOIUNoe muTaHHS «Ha mo?» MarTh crnpsMyBaHHS
BUKOPHUCTAaHI1 MIPUHOMHU

Meta po6oTH T2 NOCTAHOBKA 3aBJAaHb

Merta pobotu mossrae B CTBopeHHi METOy BUABJICHHS O0’€KTiB TpoTaTaH i 3acobamu
00pOOKH NPHUPOJHOI MOBH 3 BI3yallbHOK IHTCPIPETAL[EI0 PE3YIbTATIB, SIKHil O3BOIHTB Yy
MPONAraHUCTChKUX TOBIJOMICHHAX 3HAXOAWTH HA KOro, 1 Ha IO, CIPSAMOBaHI KOHKDETHI
BUKOPHUCTaHI B MOBIAOMJIEHHI MPUAOMM TpONaraHjay, a TakoX O0a4MTH Bi3yalbHYy IHTEpPIIPETALI0
pe3ynbTary.

Buxksiax 0CHOBHOTO MaTepiaiy

B pamkax migxomy 10 BHSBICHHS OO’€KTIB MpOMAaraHgd y TEKCTOBHX TOBIJOMIICHHSX
3aco0amu 00pOOKH MPUPOAHOT MOBH 13 Bi3yaJIbHOIO IHTEPIIPETALIIEI0 PE3YIIbTATIB Oy1€ BAKOPHUCTAHO
MHOKHHY HeHpoMepexeBUX Mojened ansd 1leHTU(IKalil MponaraHJIuCTChbKUX HPUHOMIB s
NOJAJIBIIOTO CHIBBIAHECEHHS X 3 3HaineHuMu 00’ extamu. KoxkHa 3 17 Mozeneit Oyia nonepeanbo
HaBUY€HA JIJIs BUSBIICHHS KOXXHOTO 3 MpuiioMiB mpomaranau: «Appeal to fear-prejudice», «Causal
Oversimplification», «Doubty, «Exaggeration», «Flag-Waving», «Labeling», «Loaded Language»,
«Minimisation», «Name Calling», «Repetition», «Appeal to Authority», «Black and White Fallacy»,
«Reductio ad hitlerum», «Red Herring», «Slogans», «Thought terminating Cliches»,
«Whataboutism» [6] BiamoBigHO.

Mertoa BusBIEHHS 00 €KTIB MpOIMAaraHgy y TEKCTOBHX IOBIJOMJICHHAX 13 3aCTOCYBaHHSIM
3ac00iB OOpOOKM MpUPOAHOI MOBHM Ta BI3yalbHOI IHTEpIpeTalii pe3ylnbTaTiB 0Oa3yeTbcs Ha
HEHpOMEpeKEeBUX MOJAENAX TIMOOKOr0 HaBUAHHS Ta CKJIAQNA€Tbesd 3 KuUlbkox etamiB. Creprry
3MIUCHIOETHCS 1eHTU(DIKAIlIA 00’ €KTIB TIpOTNaraHay MIITXOM PO3ITi3HABaHHS IMEHOBAHUX CYTHOCTEH
(NER). Ha npomy etamni npoBOAUTECS NONIEpEHs 00poOKa TEKCTY, 1110 BKIIIOYAE BUAAJICHHS TOBTOPIB
cepell IMEHOBAaHUX CYTHOCTEH Ha piBHI iX JIeM.

HactynHuM KpOKOM € pO3IIMPEHHS MHOXHHU 00’ €KTIB IPOMaraH/iv 3a paxXyHOK BU3HAUEHHS
aJTbTEPHATHBHUX BapIaHTIB CIOBECHOTO MOJAaHHS IMEHOBAaHUX cyTHOCTEH. [Ticas mporo popmyroThes
KOHTEKCTHI BiKHA JUIs KOXXHOrO 00’€KTa MpOoMaraHf, 3 ypaxyBaHHSM 3a/1aHOTO IOPOTOBOTO
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3HaYeHHA MIHIMQJIBHOTO po3Mipy BikHa. B MeXkaX LUX KOHTEKCTHMX BIKOH OIIIHIOETHCS
IHTEHCUBHICTh BUKOPUCTaHHS MPUHOMIB MpONaraHiy 3a JT0MOMOT0I0 HepoMepexeBUX MOeeH.

Ha ¢inanpHoMy erami OynyeTbcss MHOXHMHA BAXKJIMBUX 3B’S3KIB MDK 00’€KTamMu Ta
npuifoMaMu MpoIaraHjayd, BpaxoBYIOYM IIOPOTOBI 3HAYEHHS MIHIMAJbHOTO PIBHS MPOSBY
NpoNaraHIuCTChKUX NpuiioMiB. OTpuMaHi pe3yabTaTh J03BOJIAIOTH HE JIUILIE BUSBUTH 00 €KTH Ta
CIIPSIMOBAHICTh TpOMaraHau, aje W 3a0e3MeuMTH Bi3yali3aliio 3B A3KIB MDK NpUAOMaMH Ta iX
IIEOBUMHU 00’ €KTaMHU.

CxemaThuHe IpeICTaBICHHS 3aIIPOIIOHOBAHOT0 METOAY HaBEJEHO Ha PUCYHKY 1. BximHumu
JaHUMU JUISL peaiizalii MeToay € TeKCT JUIs aHaji3y, MHOXHHA iJeHTH(IKOBaHUX NPUIHOMIB
Iporaran/y y TeKCTi Ta Hallp MmonepeHh0 HaBYCHUX HEUPOMEPEKEBUX MOJIENIeH, aJalTOBAHUX JIJIs
aHai3y KOXHOro mpuiiomy. Pe3ynpTaToM meprioro eramy € MHOXHHA OO’ €KTIB IMpOIMaraHiw,
BU3Ha4YeHUX 3a aonomoror NER, 6e3 moBTopiB.

s A
Bxiani nani:
— TECTOBHI TEKCT I BUABICHHS 00'€KTIB MPOMATAHIH,
— MHOKHHA BHKOPHCTAHUX MMPHHOMIB ¥ TECTOBOMY TEKCTI,
— MHOKTHA HeHpoMepe:KeBUX MOJeNel, HATPEHOBAHMK AT aHATIZY KOXHOTO TIPHHOMY TIpOTIaraHIi.

%

Eran 1. ®opmyparus MEOKUHE 00 €KT1B Iporarangu murixoM momyky NER
(posmisHaBaHHA IMEHOBAHHX CYTHOCTElR)

V

Eran 2. [lonepenusa oGpobka TeKCTy Ta PO3MHUPSHHA MHOMKHHA 00 €KTIB [IPONAraHIu 33 PaxyHOK
JIOZIaBAHHA BapiaHTIB iX CJIOBECHHX TI0JaHb

\2

Eran 3. IToSygoBa KOHTEKCTHHX BIKOH JIIA CJIOBECHHX IIOJaHb KOXHOTO 00’ €KTY MpoIaraHiH
3 YpaxyBaHHAM IOPOTOBOTO 3HAUEHHS MIHIMAILHOTO PO3MIPY BiKHA

]

Eran 4. OriHioBaHHs PIBHSA BUKOPUCTAHUX NPUHOMIB MTPOTIAraHIN B MeKaX KOHTEKCTHHX BIKOH
34 HeHpOMepeKeBHMH MOEIIMH

v

Eran 5. TTo0yzoBa MHOMHHY BaXUIMBHUX 3B A3KIB MUK IpHiioMamu Ta 00’ €KTaMu Ipollaranin
3 YpaxyBaHHAM [OPOTOBOTO 3HAUEHHS MIHIMAILHOTO PIBHS HPOSBY MPOIAraHIu

v
4 ™

BuxianHi naui:
BisyampHe mogaHHA ceMaHTHUHOI MOJEINL [IPOMAraH X UL TeKCTY, fJKa MICTHTH HACTYIIHE:
— MHOMXHWHA 00’ €KTIB TPOTIaraH i,
— MHOKHHA CIIOBECHHMX TMO/JaHb 00 €KTIB MPOMATaH/H 3 OI[IHKOK iX CEMAHTHYHOI BAXKITHBOCTI,
— MHOMXHHA BAXUIMBHX 3B A3KIB MK [IpHHoMaMHi Ta 00'€KTaMi [IPOIIaraHgi 3 OLIHKOR IX
\CGMaHTI/IlIHOi BaKITMBOCTI.

)

Pucynok 1. Cxema MeToly BUSBICHHS 00’ €KTIB Iponarasau 3acodamu 0OpoOKU MpUpPOIHOT MOBH 3
BI3yaJIbHOIO IHTEPIPETALIEI0 PE3YIIbTATIB

Ha npyromy erami MeTOOWKH [0 KOXKHOI 1MeHTH(]IKOBAHOI 1MEHOBAHOI CYTHOCTI
3IHCHIOETBCS TMOIIYK CXOXKUX 3a 3HAUEHHSM CliB-00’ekTiB. Ile 0OyMOBI€HO THM, IO MOHSITTS
00’exTiB mpomnaranau € mupimuM 3a NER 1 Bkitodae He nuiie iMeHOBaH1 CyTHOCTI, ajie i KyJIbTypHi
aCIIeKTH, COLIaJIbHI TPYIM YM y3arajibHeH1 KaTeropii, 00’elHaHi 3a CIUIBHUMHU XapaKTePUCTUKAMHU.
Jlnst 1bOTO BHKOPUCTOBYETHCS TIOTIEpeIHhO HaBueHa mojaenb FastText, po3pobnena Facebook Al
Research, sika Ga3yerscsi Ha apxitektypax «CBOW» 1 «Skip-gram». Lls moznens 1o3BoJsie
aHaJI3yBaTH KOHTEKCT CJIiB, BCTAHOBIIIOBAaTH CEMaHTHUYHI 3B S3KU Ta BUSBIATU CXOXI 00’ €KTH, 110
J1a€ 3MOTY PO3LIUPUTH CIIEKTpP BUSBICHUX 00’ €KTIB MpOTAraHy.

VY pamkax po6otu FastText moHaBuaeThCs Ha TEKCTax, sIKI MICTSITh TMpOMAaraHmy, Ijs
3a0e3nedeHHs cneunigyHoCTI a0 3ajadyi. B pesynbTari nporo eramy (QOpMyeTbes pO3IIMpPEHa
MHOKHMHA OO0’€KTIB MpomaraHiu, sKa BKJIIOYa€e albTEPHATHBHI BapiaHTH iX CIIOBECHUX MOJaHb.
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MiHimManbHUI piBeHb CEMAaHTUYHOI OJU3BKOCTI BU3HAYAETHCS EMITIPHYHO 3aJI€KHO BiJl crienugiku
3aBJJaHHS; y JaHOMY BUIIA/IKy IIOPOrOBE 3HAUEHHS HE BUKOPUCTOBYBAJIOCH.

Ha Ttperpomy etami (oOpMyIOTHCS KOHTEKCTHI BiKHA Ui KOXXHOTO 00’€KTa IpOMaraHjiu.
KOHTEKCTHUM BIKHOM BBA@KA€ThCS PEUYEHHS, Y SIKOMY 3rajJlyeThCsl KOHKPETHUN 00’€KT. SIKIIo onHe
pEUYCHHSI MICTHTD KiJIbKa 00’ €KTIB MpOIaranyu, KOHTEKCTHE BIKHO CTBOPIOETHCS OJIMH pa3 1 BKIIIOYAE
BCl 00’ekTH. Y pa3i, AKIIO 00 €KT IMpoIaraHayd Mae KijgbKa CIIOBECHHUX IOJaHb, KOHTEKCTHI BiKHA
IyOJIIOIOTBCS JIS1 KOYKHOTO 3 HHX, 30epirarouu 3B'a30K i3 BUXITHUM 00’ €KToM. MiHIManbHUAN pO3MIp
KOHTEKCTHOT'O BIKHA BHM3HAYA€ThCSl MOPOIOBUM 3HAUEHHSM, K€ BCTAHOBJIIOETHCS BIJIOBIIHO 10
BHUMOT aHai3y.

Ha yerBepToMy eTami MeTOAY 3H1MCHIOETHCS aHalli3 KOHTEKCTHUX BIKOH Ui BU3HAUYEHHS
piBHS BHKOPHCTAHHS MPOIAraHAMCTCHKUX MpuiioMiB. Lle peamizyeTbcsi yepe3 BEKTOPHU3AIII0
TEKCTOBOIO KOHTEHTY KOHTEKCTHHX BIKOH 13 3aCTOCYBAHHSIM BIJIOBIIHHUX BEKTOPH3aTOPIB, MiCIs
4Oro HelpoMmepe)keBi MOjeNl aHaNi3yIOTh HPUHAIEKHICTh KOXHOTO KOHTEKCTHOTO BiKHA J0
KOHKPETHHX IpuiioMiB nipornaranau. OmiHKa 3M1MCHIOETHCS ISl BCIX BUSBICHUX Y TEKCTI MPUHOMIB,
110 JT03BOJISIE BU3HAYUTH, SIKI caMe 3 HUX OyJIM 3afisiHI y MeXaxX KOKHOTO KOHTEKCTY.

Ha d¢inanpHOMYy, m’siToMy eTami, OyIyeTbcs MHOXHHA BaXKJIMBHUX 3B’SI3KIB  MIXK
NPONAaraHINCTChKIMHU TpuifoMamMu Ta 00’ekTamu. Lle BUKOHYETBCS 3 ypaxyBaHHSM IOPOTOBOTO
3HAYEHHS MIHIMQJIBHOTO PiBHS HPOSBY MporaraHiu. Y BUIAJAKax, KOJU CHJIA IPOSIBY NpHUiloMy B
MeKaX KOHTEKCTHOTO BiKHA HE INEpPEBHUIYE BCTAHOBJICHUH IMOPIT, TAKMA NPUHAOM HE BBAXKAETHCS
3aCTOCOBAHUM JIO BIJMIOBIAHOI IPyNH 00’ €KTIB.

Takuit miaxin 3a0e3nedye HAOYHE MMOJAHHS PE3YJIbTATIB, CIPUSIOYN e(DEKTHBHOMY aHAJI3y
MOB1IOMJICHb 1 PO3YMIHHIO B3a€MO3B’SI3KiB MK 00’ €KTaMu Ta MPUiOMaMu IIpONaraHy.

Jlnst ouiHKK eeKTHBHOCTI PO3pOOJIEHOTO METOAY BHSBICHHS 00’€KTIB MpomaraHau Oyio
CTBOPEHO CIelliai3oBaHe MporpaMHe 3abe3neueHHs, siKe J03Boisie 1AeHTU(]IKyBaTH 00’ €KTH
IpoTaraliv, 3iCTaBIATH iX 13 BUKOPUCTAHUMH TpPUIOMaMH Ta BimoOpakaTu pe3ynpTatu y Gopmi
Bi3yanbHOi aHamiTku. OTpuMaHi JaHi MOPIBHIOBAJIUCS 3 BUCHOBKAMU aBTOPUTETHUX PECYPCIB 1
eKCHIepTiB y cdepi mpoTuAil mponaranii, oo a0 3MOTy OLIHUTH SKICTh 3alIPOIOHOBAHOTO MiAXOTY.

Jlis TecTyBaHHS BHUKOPUCTOBYBAJIHCS PO3MIYEHI IOBIJOMIIEHHS 13 COIIAIbBHUX MEpeK,
nigrorosiieHl LleHTpom cTpareriyHux KOMyHiKamiil [7], Kl MICTHIM €KCIepTHI BUCHOBKH. lle
3a0€3MeunsIo0 MOXJIMBICTh TOPIBHSHHS DPE3YJibTaTiB POOOTH METOJY 3 HE3aleKHUMM OLliHKaMHU
¢daxiBuiB. [lporpamue 3a0e3medeHHs I peanizamii MeTtoay Oylio po3poOieHo y BUTIIAII
Be03acCTOCYHKY Ha MOBI nporpamyBanHs Python. B mexxax cTBopeHOro mporpamMHoOro 3abe3nedeHHs
3acTocoBaHO: 17 momepeHbO HABUEHUX HEMpPOMEpEKEBUX MOJeNel, CTBOPEHMX Ha OCHOBI
HOMEpEeTHIX JIOCHiKeHb;, HellpomepekeBy 010mioTeky Stanza s po3mi3HaBaHHS IMEHOBAaHHMX
cytHocteit (NER); dpeiimBopk Flask mist opranizanii Be6inTepdeiicy; moaens FastText, agantoBany
10 cnenudiky aHamizy MpONaraHAMCTCHKUX IOBIIOMIIEHb IIJISXOM JOHaB4YaHHA. [Ipuknan
MOBIJIOMJIEHHSI Ta HOr0 aHai3y aBTOPUTETHUM JKEPESIOM HaBEJIEHO Ha PUCYHKY 2.

VY xoami nochijkeHHS e(EeKTHBHOCTI 3alpOIOHOBAHOIO METOAY BHUSBIEHHS OO €KTIB 1
NpUHOMIB ITponaranin OyJio BCTAaHOBJICHO, IO Pe3yJIbTaTH, OTPUMaHi 3a JOITOMOTOI0 pO3pOOICHOTO
HiAX0y, JEMOHCTPYIOTh BUCOKY KOPEJISLI0 3 eKCIEPTHUMH OLIHKaMH, IpeicTaBieHuMu LleHTpom
CTpaTeriuHux KoMmyHikamii [18].
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Lli Tean npo Hi6uTo @noskuBaHHA ykpaiHcbkux BiicbkoBrx Ta gemMoparnisauio
BilicbkoBocny>k60BLIIB Manu Ha MeTi:

avuckpeauTyBaTh 36poliHi Cunu, HauioHanbHy MBapailo Ta iHWI Biid-
cbkoBi chopMyBaHHA B 04ax rpomansH Ykpainu;

nepekoHaTu rpoMapsH YkpaiHun He BcTynaTu go nae ykpaiHcbkoro
Bilicbka, a aitoumx BiicbkoBocny>k60BLUiB - 8BiNbHATUCH i3 HOro nae;

HapaTu BaknueocTi Telegram-kanany «HaulllTaBy» ak pkepeny
HIBUTO yHikanbHWX HOBWH, Npo fki «He
po3noBicTe» BilicbkoBe komaHOyBaHHA Hauuracy 4
Vkpainu, wo6 sasooBaTW AOBIpY BIili- [l i
cbkoBocnykBoBuis-nignucHukis, 8 no-
[anbLoo MeTolo crioHykaTw ix ginutucs
iHdpopMmalieto, sokpema, cnykEosoro i
TaemHoro xapaktepy;

Okpemoto cknaposoto kamnanil i3 «BUCBITNEH-
HA MopanbHoro saHenapy 3CY» € aHomManbHO
Benuvka kinbkicTs nosipomnexb «HaullltaBy»
npo camory6cTBa BilicbkoBocnyk6osuis. 3a
2019 pik 6yno sadikcoBaHo WoHanmeHwe 38
nosigomnexb, B 2020 - woHahimeHwe 19, a B
2021 - 20, y akvx He Byno HasepneHo kogHux gokasis, Wo Ui icTopil cnpaeai
Manu Micue i B Tomy BUrnagi, B akomy ue nopasas Telegram-kaHan.

Pucynox 2. AHani3 nOBiJOMJICHHS 11O MICTUTb MTPONaraHay BiJ aBTOPUTETHOTO jkepena [ 18]

JIJis miATBEepKEHHST HABEICHO MPUKIIAL aHATI3y JOMKCY 3 MPONAraHIUuCTChKOTO KaHATy
(pucyHok 2). Y 1poMy NpUKIaAl pe3ysbTaTd aBTOMAaTHYHOTO aHaji3y, BUKOHAHOTO 32 JJOTIOMOTOI0
PO3pO0ICHOTO METO[y, CIIBIIAJIM 3 BHCHOBKaMH eKcnepTiB. Lle CBIAUUTH MpO 37aTHICTH METOIY
TOYHO 1IeHTU(DiKyBaTH 00’ €KTH MPOMAraHu Ta BU3HAYATH, K1 IPUHOMHU OyJI0 BUKOPUCTAHO JUTS 1X
MaHIMyJISTUBHOTO BILIHBY.

OtpumaHi pe3yabTaTH MiATBEPIKYIOTh MPAKTUYHY 3aCTOCOBHICTH PO3POOJICHOrO MiAXOAy
JUIE  aBTOMATHU30BaHOTO AaHAJi3y NPOMAraHIUCTCHKUX IOBIIOMIIEHP 1 MOJIJIMBICT HOTO
BUKOPHUCTAHHA B pealbHUX YMOBAaX JAJIsl MIATPUMKHA poOOTH aHATITHKIB Ta AOCTIAHUKIB. Pe3ynpTatu
HaBE/CHI HAa PUCYHKY 3.

<« G @ 127.00.1:5000/analyze * © ® O (

Analysis Result:
The set of named entities with semantically close objects according to the analysis of contextual dependencies:
3CY, ORG, spaHui (0.21), Bynuus (0.17), cynepeua (0.17), BuHukHyTH (0.16)

poHbac, LOC, ama (0.26), sunusatu (0.22), pasom (0.20), paniwe (0.17)
AoHeubkui obnacte, LOC, Boxu (0.17), BuHukHyTH (0.15)

Set of propaganda objects in the text:

! CMepTb ABOX BiliCHKOBOCN! i8 3CY B ceni Ha i
Ha Rown6aci oauH 3 sificbkosocnyxGosuis aacTpenuecs 3 TabenbHoi 36poT, konu BpaHui 3HanLwos nopyy 3 coboo MepTBMM CBOrO ToBapuLwa no cnyx6i.
3a iHthopmaLlielo BUAAHHA, Maiop | CepXaHT Pa3oM BUNMBANM y XUTNOBOMY GyAUHKY, NICNA HOTO MDK HUMMK peuKa, ska 1a y Giitky Ha noBip'i.

Maitop cunbHo NoGue cepikakTa, WO TOM BTPaTHB CBIAOMICTL | 3amMep3 Ha Bynmuui. BpaHui silicbkosocnyxGoselb BUSBIB ToBapuLwa no cnyk6i MepTBUM i 3acTpenueca 3 TaGenbHol 3Gpol.
Sk nosigomnsanocs paiwe, 8 foHeubkin obnacTi y xutnosomy GyanHKY 3HaNLLNM MepTBIUMIA ABOX BilicbkoBux 3CY. 3a indopmauieio 3MI, y 0AHOMO 3 HUX, Maiopa, BorHenanbHe NopaHeHHs ronosu, y
npyroro — 3abof ronosu.

Power of techniques used and their associated thematic objects:

The used techniques:
s Loaded Language. Expressed at 0.582
2. Repetition. Expressed at 0.317

Assessment of propagandistic objects belonging to the used techniques:
{3CY (ORG) Added thematic set: [BpaHLi, Bynuus, cynep ewunxuym]) o of i [Loaded L 0.593; Repetition 0.612]
{nonb6ac (LOC) Added thematic set [ama, BunuBatu, pasom, of i [Loaded Language 0.407; Repetition 0.35]
{noxeubkun obnacte (LOC) Added thematic set: [BoHu, BuHukHyTH]} Assessments of belonging: [Loaded Language 0.361; Repetition 0.71]

Pucynok 3. BizyanbpHa iHTepIIpeTali€to NpUHHATUX PILIeHb 32 METOAOM BHUSBIIEHHS 00’ €KTIB
nponarasain

AHaJi3 3a T0MOMOTOI0 pO3pO0OJIEHOTO MPOTPAMHOTO 3a0€3MeUeHHs MOKa3aB BUKOPUCTAHHS
nponaranaucTebkux npuiiomi «Loaded Language» (0.582) 1 «Repetition» (0.317), inenTudikynan
00’extn mpomnaranau (Hanpukiman, 3CY, Ionbac, [loHempka 00y1acTh) pa3oM i3 CEMaHTUYHO
OMU3BKMMU CJIOBaMH Ta OLIHUB BiJMOBIIHICTh 00’ €kTiB mponaranau 1o npuiiomis: 3CY («Loaded
Language» — 0.593, «Repetition» — 0.612), Jonbac («Loaded Language» — 0.407, «Repetition» —
0.35), Honemnpka obmacth («Loaded Language» — 0.361, «Repetition» — 0.71), 3 momambpimm
BI3yaJIbHUM B100paK€HHSIM 3HANHIEHUX 00’ €KTIB Y TEKCTI.
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Y pesynbraTi JAOCHIPKEHHS 3alpONOHOBAHOTO METOJY BHSIBICHO, IO BIH J03BOJISE
OTPUMYBATH PE3YJIbTATH, SIKi KOPEIIOIOTH i3 pe3yJIbTaTaMHU 3 aBTOPUTETHUX MapKOBAaHUX JDKEpEIl. 3a
JIOTIOMOT 010 3aCTOCYBaHHSI KOMILIEKCHOTO ITiIXOY /10 BUSIBJICHHS MTPONAraHiv, Ta 3 BAKOPUCTAHHAM
BI3yaJIbHOI 1HTEpHpeTalii pe3ysbTaTiB, BUPIIIYEThCS 3a/iadya B3a€MO3B’SI3KiB MiK BHKOPHCTAHHUMH
npuiioMaMu Ta 00’ €KTaMu MPOTIaraHIu.

BUCHOBKMN.

Po3pobieHo MeTO/ BUSBICHHS 00’ €KTIB MPONaraHan 3acobamu 00poOKU IPUPOIHOI MOBH 3
Bi3yaJIbHOIO 1HTepnpeTau1€}o NPUHHATHAX PIIIEHbB, 110 Blz[plsHﬂeTLCﬂ BiJl ICHYFOUHX PO3LIMPEHHSM
MHOXXHHHA 00’ €KTiB MpONaraHju 3aBJSKH 1O0JaBaHHIO BaplaHTlB IX CIIOBECHHMX IIOJAHb 1
BUKOPUCTAHHIO KOHTEKCTHUX BIKOH JUIsi BWSIBJICHHS B3a€MO3B’S3KIB MK BUKOPHCTAaHUMHU
npuiioMaMu Ta 00’ekTaMu mponaraHiu. lle mokpaiye pe3ynbTaTH BHUSBICHHS Ta iX Bi3yalilbHE
npeJcTaBieHHs. MeToJ BKJIHOYae p03Hi3HaBaHHH IMEHOBaHMX CYTHOCTEH, TONEPEHIO 00poOKy
TEKCTY, PO3LIMPCHHS MHOKHHH 00’€KTIB Tpomnaraxiy, n06y;[013y KOHTEKCTHHUX BIKOH, OI[IHIOBAHHS
piBHS BUKOPHCTAHUX MPUUOMIB Ta TOOYNOBY BaXUIMBHX 3B’S3KIB MK IpUOMaMH Ta 00’ €KTaMu
IpOTaraHIy.

JIsl MiBUIIEHHS TOYHOCTI Ta SKOCTI BHSBJICHHS NMPUKHOMIB Ta O0’€KTIB IpOIAaraHay 3a
CEMAaHTHYHUMH MapKepamu y MOBIIOMIIEHHSX 3aco0amu o6p061<1/1 PHUPOJTHOT MOBH 3 IOJAIBIIO0
IHTEPIPETALIEI0 PE3YIBTATIB, Oy0 PO3POOICHO MIAXIA, SKUH H03BOISE meHTHq)leBaTH 00’€exTH
pONaraH/i y TeKCTax, a TAKOX Ha KOro 1 Ha 110 cnpﬂMOBaHl HpOHaFaHL[I/ICTCLKl HpI/II/IOMI/I MeToz[
BUpiNIye TPoOJIEeMH BIJICYyTHOCTI KOMIUIEKCHOTO aHaji3y B3a€MO3B’SI3KiB l'IpI/II/IOMlB Ta 00’€KTIB
MpoMaraHayd B TOBIJIOMJICHHSX 1 BIJCYTHOCTI y3araldbHCHb MJII OO0 €KTIB TpOMaraHgd Ta ix
ATBTEPHATHBHUX 3TaJJ0K. EKCIIEpUMEHTaIBHO TOBEICHO €)EKTUBHICTB ITiIXOTY, IO I03BOJISIE, OKPIM
nomryky NER 3a monomororo 6i6miotekn HeiipoHHOT Mepexi « STANZAY, po3muproBaTi mepertik
00’€eKTiB HpOHaFaH,Z[I/I 3a JIOHOMOror0 0i0mioTeku MaminHHOro HaBuaHHsA «FastText», a Takox
OLIIHIOBATH iX 3B'SI30K 3 BUKOPHCTaHHMH npuitoMamMu. Pe3ynmbTaTEm METOMy KOPEIOKTHh 3
EKCIIEPTHUMH OIlIHKaMH, a Bi3yaJlbHa aHaJITHKa 3a0e3ledye HaOYHE CIIOCTEPEKCHHS 00 E€KTIB
BIUTMBY B paMKaX IpOMaraHJIuCTChbKUX MPUHOMIB.
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HEMPOMEPEXHA TEXHOJIOI'TS PO3III3HABAHHSA KOMILIEKCHOI
JIAJTBHOCTI ITIPOMUCJIOBOI'O TIEPCOHAJLY 3A JTAHUMMU CMAPT-
IroanHHUKIB

Anomeuia: Cyuacni nioxoou 00 PO3NIZHAGAHHA KOMWIEKCHOI TIOOCLKOL OILILHOCMI 8  PeanbHOMY Haci
BIOKPUBAIOMb HOBI MOXNCIUBOCMI 014 iX 8uKkopucmantsa 6 Indycmpii 5.0. 3a paxyHok ybo2o MOX*CHA NOKPAWUMU THOOUHO-
MAWUHHY 83AEMOOTI0 MA OYIHKY NPOOYKMUBHOCMI npayienukie. Y pobomi npeocmasieno cucmemy 015 pO3Ni3HABAHHS
KOMRIIEKCHOI QiANbHOCMI NPOMUCIOB020 NEPCOHALY Y GHYMPIUHIX JO2ICMUYHUX CUCIEMAX 3 GUKOPUCIMAHHAM CMApm-
200uHHUKiI6. Po3pobneno annikayito 3a 00nomozoio sAKoi 3i0pano YHiKanbHUll HAOIp Oanux. 3acmocosano GUABNIEeHHS
aymaaepie y 3i0panux OAHUX mMa 321A0NCYBAHHA WYMIE 3a Oonomozoio @inempis. [[na kiacugixayii npocmux
akmusHocmel UKOpUcmano Heupoury mepescy DenseNetl21, sixa oocsena Fl-oyinku 91,01%, Ons komniexchux —
87,44% 3i cmpamezicio cnitbHUX OAHUX.

Knrouosi cnosa: cmapm-200uHHUK, NPOMUCIOBULL REPCOHATL; OA308Ull KIACUDIKAMOP,; KOMNIEKCHA OISLIbHICIb;
Kaacupixayis, nepeddayeHms.

Abstract: Modern approaches to recognizing complex human activity in real time open up new opportunities for
their use in Industry 5.0. This can improve human-machine interaction and employee productivity. The paper presents a
system for recognizing complex activities of industrial personnel in internal logistics systems using smart watches. An
application has been developed with the help of which a unique data set has been collected. Outlier detection in the
collected data and noise smoothing using filters were applied. For the classification of simple activities, the DenseNet121
neural network was used, which achieved an F1 score of 91.01%, for complex activities — 87.44% with a shared data
strategy.

Keywords: smart watch; industrial personnel; basic classifier; complex activity; classification; prediction.

ITocTanoBKa npodJieMu

BuxopucranHs nmopTaTUBHUX TEXHOJIOTIN Ul pO3II3HABaHHS JIIOJACHKOI JisiabHOCTI (PJIJI)
Ha0yJI0 aKTHBHOTO PO3BUTKY 1 3HAWIILJIO 3aCTOCYBAHHS B: MEAUIMHI (IETEKIIisl MaiHb, SMiJENcil Ta
MOHITOpUHTY akTHBHOCTI [1, 2]); Oe3neni (BusiBneHHs anomaniii [3]); criopti (aHami3 TpeHyBaHb i
BUTpATH Kanopiii [4, 5]). 3 nepexomom g0 [HaycTpii 5.0 BiAKpHIKCS HOBI TOPU30HTH BUKOPHCTAHHSI
PJIJ] nnst mokpalmieHHs JIFOJMHO-MAIIMHHOT B3a€EMOJIl Y CHCTEMH IHTEIEKTYaJIbHOTO YIPAaBITiHHS
nignpuemctBamu [6-8]. KirrouoBuM esieMeHTOM /s IOCIIKSHD B TAKUX CHCTEMaX € JiaHi 3i0paHi 3a
JIOTIOMOT'OF0 CEHCOPIB SIK 3 TEXHIYHUX CHCTEM TaK 1 3 MPOMHCIIOBOTO IEPCOHAITY.

@®enepatuBHe HaBuyaHHA (PH), gk cydacHMil MeToJ MAIIMHHOIO HaBYaHHS, I03BOJISIE
3A1cHIOBaTH Oe3medHuii 30ip Ta aHam3 iH(OpMaIli He JIUIIe 3 TEXHOJOTIYHOTO 00JIaJHAHHS, aJie 13
HOCUMHX TPHUCTPOIB MPOMUCIOBOIO MEPCOHATY TaKUX SK CMapT-TOAMHHUKU 0Oe3 mepeaayi 10
[EHTpaIbHOTO cepBepa. Lle 0co0aMBO BaXKIIMBO B YMOBaxX IMPOMHUCIIOBOI €KOCUCTEMH YKpaiHH, e
NUTAaHHSA KOH(IACHLIIHHOCTI Ta 3aXUCTy JaHuX € KputuuHuMu. @H no3Bossie mparoBaTH HaBiTh B
yMOBax HeCTaOUIbHOI 1HQPACTPYKTypH 3 YacTUMH IepeOosiMU 3B’SI3Ky B yMOBax BIMHHM 13
3a0e3MeueHHsIM aBTOMAaTH3allil NPUHHATTSA pIilIeHb Ha OCHOBI JIOKAJbHO 310paHUX MJaHUX B
pearbHOMy d4aci. lle MOXnIMBO 3IIMCHUTH 3a paxyHOK: BUKOPUCTaHHS JIOKaJIbHUX Oydepis,
acuMeTpuyHoro rpadiky CHHXpOHi3alii, BHKopHucTaHHS Edge-cepBepiB, CTIHKHX HPOTOKOJIIB
nepeaadl JTaHuX, JIOKaJTbHOI aBTOHOMHOCTI, Dropout-pe3sucTeHTHOCTI, CTUCHEHHS Ta OOMEKEHHS
oOcsary nmaHux. Taki cucTeMa MOXHa JIETKO aJanTyBaTh A0 MOTped KOHKPETHUX YKpaiHCBKHX
BUPOOHUITB, CIIPUSAIOYH X KOHKYPEHTOCIIPOMOYKHOCTI Ha MIKHAPOJITHOMY PUHKY.

AHaJi3 ocTaHHIX myOJikanii

3TiJIHO MPOBECHOTO aHAIII3Y JITEpaTypHUX JpKepen, 3aramom, PJI/] moxxHa po3nimuty Ha 2

TUNH 3aBlaHb. [IpocTa moBTOproBaHa moseninka (Oir, cuainas) [9-12] Ta ckinanHi KOHTEKCTYalbHI
nii (po6ota, BominHs) [13-17] siki BUMararoTh kiaacugikarlii, CKJIaIHUX MOJIENIeH Ta pOOOTH B PEIKHMI
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peanbHOro vacy. IIpocra moBesiHka Bxke e()EKTUBHO PO3MI3HAETHCS, ajlé OCHOBHA yBara B LIbOMY
JIOCJTIJDKEHHI TOJISTaE B MPOTHO3YBAaHHI CKIIAHUX MiH, III0 MAaIOTh NMPAKTHYHE 3HAYCHHS B Cy4acHIN
IHTENeKTYyaIbHIN 1HTyCTPil.

ButbmiicTh iCHYIOUMX pillleHb JJII MOHITOPHUHTY IIOBEIIHKH TPOMHCIOBUX IPaIliBHUKIB
0a3yloTbCsl Ha aHami3i 300pakeHb 3 KaMep Ta OTPHUMAHUX 13 MOPTATHBHHX CEHCOPIB abo ix
koMOiHamii. OHaK Miaxia, 3aCHOBaHUN Ha 300paKEHHSX, MA€ CBOT HEJOJIKH, OCKUIbKH HAKJIAIae
00OMEXEHHS Ha TPAEKTOPIi pyXy IPOMHUCIOBOTO MEPCOHATY, IKH Ma€ 3HAXOAUTUCS B 30H1 BUIUMOCTI
kamep. Lle € HEeMOKJIMBUM Ha IMIANPUEMCTBAX, OCKUIBKH MPalliBHUK TOBUHEH BUKOHYBATH Pi3HI il
Ta OJJHOYACHO CITIBIPAIIOBATH 3 ACKITPKOMa aBTOHOMHUMHU TpaHcropTHUMH 3acobamu (AKT3) un
IHITAMUA TTPOMHUCIOBUMH TEXHIYHUMHU 00’ €KTaMu. ToMy JOCTIKEHHS 30CEPEIKEHO Ha po3poOiii
MiIXOAIB IO KOMIUIEKCHOT Kilacudikailii Ta IpOrHO3yBaHHI JisTIbHOCTI MPOMHCIIOBOTO IMIEPCOHATY 3
BUKOPUCTAHHSIM CEHCOPIB BOYZOBAaHUX Y CMAapT-TOJIUHHHUKH.

B konTtekcti cmapT-iHaycTpii y [16] npencraineno anroputv XGBoost mokasaB Haikpariii
pe3yabTaTH i Kiiacudikaiii JisUTbHOCTI B JIOTICTUHYHUX CUCTeMax. PillleHHs Ha OCHOBI Bificokamep
1 mopratuBHUX ceHcopiB [17-19] moTpeOyroTh 3HAYHMX pecypciB i OOMEXKYIOTh MOOLUIBHICTH
npaniBHUKIB. AnbTepHatuBHUN miaxin y [20] BukopuctoBye ceHcopu eMHocTi Tina Ta IMU, ane
BUMarae CreriagaizoBaHoro o0JiaJHaHHS.

Meta po6oTH Ta NOCTAHOBKA 3aBJAaHb

Mera podoTH: po3poOKa HEUPOMEPEKHOI CHCTEMH aHaJli3y KOMIUIEKCHOI MisSUTBHOCTI
MIPOMHKCIIOBOTO TIEPCOHATY B PEAIbHOMY Yaci Ha OCHOBI JaHUX 3 CEHCOPIB CMapT-TOAUHHUKIB. s
300py MaHUX HEOOXiTHO PO3POOUTH arUTIKAIIio, sIKa MOXe 00poOIATH iHPOpMAIIiI0 Ha MPUCTPOT 200
repesaBaTH ii Ha KpalloBUM cepBep.

IMocTaHoBKA 3aBAaHb:

1. Po3poOutu cucremy 300py AaHMX 31 CEHCOPIB CMapT-TOJUHHUKIB [UIsi MOHITOPUHTY
JiSUTBHOCTI IEPCOHATY B peaIbHOMY Yaci.
3i0paTH aH1 Ipo TUIOBY aKTHUBHICTH MEPCOHATY Ha MIANPUEMCTBAX sKi mpaiorTs 3 AKT3.
3. 3acrocyBaTu METOJM BUSIBJICHHS T4 YCYHCHHSI BUKH/IIB Ta IIYMIiB y JaHUX aKcelepoMepa Ta
ripockoria.
[TinroTyBatn qaHi s TpEHYBAHHS MOJCIICH MAIIMHHOTO HABYAHHS.

5. Po3pobutu anroputmu s Kjacuikamii KOMIUIEKCHOI MiSTIBHOCTI, LI0 MHIATPUMYE

po3nonineHi odunciaeHHs Ta @H ta nepeBipuTy HOoro epeKTUBHICTS.
Cucrema 300py indopmanii 32 10MOMOror CeHCOPiB CMAPT-TOAMHHUKA.

Po3pobiiero po3noniieny cuctemMy 300py Ta aHali3y JaHUX sIKa CKIIAAETHCS 3 PO3YMHOTO
roquaHuka Samsung Galaxy Watch 5, mogarky ans WearOS ta xmapuoro cepsepa. Jlogatok
Hanucanuii MoBoto Kotlin aiist onepaniiinoi cucremu WearOS nepen6adae 30ip JaHUX 32 TOTIOMOT OO
CEHCOPIB CMapT-TOJUHHHUKA; KOHTPOJIb MPOIIeCY EKCIIEPUMEHTY depe3 iHTepdeiic; mepeady JaHuxX y
xMapy. XMmapHUil cepBep moOymoBaHuii 3 BukopuctanHsM MySQL-Server na mmardopmi PaaS.
ATmikalis 103BOJII€E OTHOYACHUHN 301p JaHMUX BiJl KUTBKOX Cy0’€KTiB IPOMUCIOBOTO MepcoHany. Ha
puc. 1 mpouTroCcTpoBaHO 3arajbHy CTPYKTYPY pO3p00JIEHOT CUCTEMU 110 300pY JTaHUX.
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Puc.1. CtpykTypa po3po0sieHoi cucteMu 300py TaHUX.

3a monoMoro po3poOiaeHoi mporpamMHoi arutikaiii Juis cMapT-TOAMHHMKA 310paHo JaHi 3
TPUOCHOBUX aKCeJIepoMeTpa Ta Tipockoma (mricte kaHamiB) 3 uactotoro 100 I'm misa m'stu
NPEJCTaBHUKIB TPOMHUCIIOBOTO TIEPCOHAly MO0 JIBOX arperarax, 3arajioM 3,28 TOJuHH
HIeCTUKAHATLHUX NaHuX. KoxkeH 3-cekyHaHUN (parMeHT JaHuX pa3oM 3 iH(opmaliero (sSka pyka,
MITKH 4Yacy, i1IeHTu(diKaTop cy0’€KTa) CTUCKAEThCS Ta HAJICUIA€TheA K ppeitm nanux. dparmMeHTu
MEHIIIe TPhOX CEKYH/I BIAKUAAIOTHC. KaJpy 3 0JHAKOBUMH MITKaMH 4acy 00’ €IHYIOThCS B TPYIIH, a
HEMOBHI IPYIU BIKUJAIOTHCS.

MeTtoaoJioriss kommnjaekcHoro PJI/{

3anpornoHoBaHa METOAOJIOTISI BUKOPUCTOBYE CTEKIHT KJIAcH(IKaTOPIB AJISl PO3Mi3HABAHHS Ta
IPOTHO3YBAHHS TUITY arperaTty Ha OCHOBI CHUTHaJIIB cCeHCOpiB. ba3oBuii kiacugikatop HaBYa€THCS HA
3-ceKyHAHHUX O-KaHaNbHUX JaHuX, 00pobnenux HBII, nis po3mizHaBaHHS 6a30BUX aKTUBHOCTEH, a
MeTakiacudikaTop Kiacu(ikye arperaTd Ha OCHOBI IIOCHIJIOBHOCTEH pe3yJbTaTiB 0a30BOro
ki1acudikaropa, 3 BUKOPUCTAaHHSIM TPaHC(HEPHOTO0 HABYAHHS JJIS MOKPALICHHS MPOJYyKTHBHOCTI 1
YHUKHEHHS TIepeHABYAHHS.

Ha nepmomy erarmi 1aHi 0OpoOJIsitOTECS I YCYHEHHS ayTiaepiB Ta 3IV1aJKyBaHHS IIyMiB,
CTBOPIOIOYM HEMEPEpPBHI 6-KaHaJIbHI IOCTIJOBHOCTI CHUTHAIIB, IO BiJOOpa)karOTh BUKOHAHHS
arperaty. Ha npyromy erami 3acTocoByeThCsi HemepepBHe BeiiBieT mneperBopeHHs (HBII) no
KOXKHOTO KaHally curHaiiB. TpeTiii eram BKIIOYAae TpEeHYBaHHS 0a30Boro kiacudikaTopa s
pO3Mi3HaBaHHS 0a30BUX AKTUBHOCTEH, MICIs 4YOro MITKM s HHUX IepeBH3HauyaroThcs. Ha
YETBEPTOMY €Talll MeTakiaacugikaTop Ta MPEIUKTOP HABUAIOTHCS Ha TOCIITOBHOCTSIX PE3yJIbTaTiB
6a30Boro kiacudikaTopa i po3MizHaBaHHSI KOMIUIEKCHOI isSUIbHOCTI aKTUBHOCTI.

Bukunm B AaHUX MOXYTh 3HM3UTH TOYHICTb CHUCTEMM pO3Mi3HABaHHS KOMIUIEKCHOI
JUSIBHOCTI, TOMY OYyJIO 3aCTOCOBAaHO Pi3HI METOAM BUsBIIEHHS ayTiaepiB. Ha puc 2. mokasani cepii
JaHUX 3 BHUKUJAMH, BHU3HAUYEHHMMH pI3HUMH MeETOJaMu: craHmapTHoro BiaxwuienHus (STD),
gorapudmivHoro cranmapTHoro BiaxwmienHs (Log-STD), mpocTopoBoi kiactepu3salii J0AaTKiB i3
mymoMm Ha ocHoBi mimbHOCTI (DBSCAN), MikBeprukansHoro posmaxy (IQR). UepBoni Toukm
MOKa3yITh BUKUAN JJIS1 KOKHOTO METO/Y.
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Puc. 2. BusBnenns BukuiB 3a gornomoror meroais STD, Log-STD, DBSCAN, IQR.

Sk BHIHO, IO Pi3HI METOAM BUSBISAIOTH Pi3HY KuUTbKicTh BukHIiB. DBSCAN BusiBisie
HaWOLIBITY KUIBKICTh BUKHU/IIB, III0 MOXKE CBIAYUTH PO MOTO YYTIUBICTH 10 aHOMAJIIK y maHuX. s
MiHiMi3alil BIUIMBY HIyMiB BHUKOPHUCTOBYIOTHCSI MeTOAM (imbTparlii, 30KpemMa KOB3HE CEpeHE,
eKCIIOHEHITIaIbHE 3rM1aKyBaHHs Ta GiabTp Cainbkoro-Iones (quB. puc.3)

Comparison of smoothing techniques to smooth and restore lost data

S 160 260 360 ado 500
......

Puc. 3 IlopiBHSIHHS METOAIB 3T KEHHS 32 JJOMIOMOT0I0 (QiIbTPiB

SIK BUJIHO 1O pe3yJibTaTax puc. 3. IMIYMHU JOLUIBHO 3IJ1a/KyBaTH 3a JOIOMOIOI0 JIOKAJIBHOT
perpecii. [Ipote ms ii peaizarii HeoOXiIHA JOCTATHS KUIBKICTh TaHUX Y KOKHOMY 1HTEpBAJIi.

Buxigni pmani 3a gomomoror HemepepBHe BeiBier mneperBopenHs (HBII) — moxHa
NPEJCTaBUTH SIK JBOBUMIpDHY TEIUIOBY KapTy (ckamorpamy). BoHa mo3Bomse nepeBecTtd
kinacudikalilo YacoBHX psAOiB Yy 3amady kiacudikamii 300paxkeHb. ToMmy nami MoOKHa
BUKOPHCTOBYBAaTH HANpHUKIa[ 3rOpTKOBi HelpoHHi Mepexi (3HM). Jlns wmiei poGotu oOpaHO
MaTepUHCHKHI BeiBiaeT Mopie 3 mapamerpamu a Big 0 1o 256 1 b Bix 0 mo 300. Taxki mapameTpu
HiATBEPHKCHI TIOTIEPETHIMA JTOCIDKSHHSIME 11 33134 PJIJ] Ha OCHOBI OpTaTHBHUX CEHCOPIB [3,
12].

[Tomepenuporo ompanroBaHHs JaHUX IJIi HEHPOHHUX MEPEX 3HIMCHIOIOTH y IIICTh €TaIiB.
[Tepmmii eran BKJIOYae Kajpu Io3a eKCrepuMeHTOM. JIpyruil BUSBIsE€ Ta BUILISE PO3PUBH MIX
kagpamu. Tpetiit 3BoauTh nociaiioBHocTi 10 20 kaapiB (60 cexynn). YerBeptuii Bukonye 50%
HNEPEeKPUTTS Ul po3IupeHHs HaOopy. II'sTuil po3ainse HaOip Ha MIIMHOXHMHU Ui HAaBYAHHS,
TeCTyBaHHS Ta Bamijamii. (s po3aiuieHHs MaHWX BHUKOPUCTOBYIOTHCS ABI crpaterii. [lepmia
3a0e3mnedye yHiKalbHI JaHl s KOXKHOro Kiacudikaropa, a Apyra — Oulblle JaHUX JUIs MeTa-
knacugikaropa. loctuii etan Britovae 3actrocoByHHst HBII 3 maTepuncekuM BeliBneTom Mopiie Ta
napameTpoM MacmTadyBaHHs Bif 0 10 256.

Sk 6a30Bwuii kiacugikarop Bukoprctano Mmozens DenseNetl121, creniaabHo afgantoBaHy AJis
3agau PJIJI, momepennbo HaBueHa Ha Habopi KU-HAR [12, 21] 3 Fl-ominkoro 97,52%. Mojenb
aJIarTOBaHO, 3aMIHMBILIM BEpXHIM IIap Ha HOBMM 13 YoTHpMa HeWpoHamu (iHimiamizauis Xavier).
3amoporkeHo 136 mapiB st po60TH 3 ManuMu Habopamu AaHux. HaBuanHs npoBoaniocs 100 emox
3 onrtuMizatopoM Adam, Oatyem 32 Ta 3BOPOTHHMMH BHUKJIMKaMH JJIi KOHTpOJto. Pe3ynbraTu
HaBeJIeHO 115 Halikpaioro 3 10 3amyckiB.

Jani nopiBHsAHO MeTa-Ki1acudikaTtopu Ha 6a3i apxitekryp LSTM, BiLSTM, GRU, BiGRU Ta
3HM. Haiikpamuii pe3ynbrar nokaszana 3HM Ha miaiMHOXKUHI TecTiB y Tabu.1

Tabmung 1. Pesynbratu knacudikarii 6a3oBoro kiacugikatopa Ha MiAMHOXHUHI TECTIB.
Accuracy Precision Recall AUC F1-score
90.90% 91.33% 90.69% 97.26% 91.01%

[Ticns HaB4aHHS Ta OIIHKK 0a30BOro KiacudikaTtopa MITKH HAOOPYy AaHUX JJIsl BCIX 3pa3KiB
OyJ1I0 OHOBJICHO Ha OCHOBI Pe3yJIbTaTiB BiJl HEHPOHIB BEPXHHOTO MOBHICTIO MiJKIIOYEHOTO Iapy
HaBueHOTO 0a30Boro kimacudikaropa. Jlamai 3actocoBaHo ABI cTpaterii mis kiacudikailii arperaTis.
[Tpu nmepuriit crpaterii posainenHs 40% HabOpy JaHUX BUKOPUCTOBYETHCS JJIsl HABUAHHS 0a30BOT0O
kjacudikaropa Ta Baiijamli Mera-kinacudikaropa, iHmi 40% st HaBuaHHS MeTa-KiiacugikaTopa Ta
Banijanii 6a3zoBoro kiacudikaropa, Ta octanHi 20% nans tectyBaHHs. Llg crparteris 3abesneuye
VHIKQJIBHI JaHl Ui HaBYaHHS MOJEJICH KOXKHOTO PIBHS, IO € HAWKpaIlIuM CIIEHapieMm, ajie ska
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NOTEHIITHO Ha/la€e HEeIOCTaTHhO MaHMX JUIi HAaBYaHHS MeTa-KiacugikaTtopa, OCKIIBKM BIiH HE
BUKOPHUCTOBYE TaHcepHe HaBuaHHs. Jlpyra ctpareris Bumiisie 40% Ha HaB4aHHS 000X
kinacudikaropiB, me 40% wHa Bamigamito 06a3oBoro  KiacudikaTopa Ta  JOHABYAHHS
MmeTakiacudikaropa i pemry 20% Ha tectyBaHHs. [[pyra crpaTeris Hajae OuIble JaHUX JUIS METa-
kimacudikaropa, ajge MOXKe MPHU3BECTH 1O TOro, IO BiH He 3adikcye MOMMWIKK 0a30BOTO
kiacudikaropa Ha HOBUX JaHUX.

Tabmuus 2. Pezynpratu Kinacugikanii Mmeta-kiaacudikatopiB Ha MiIMHOXKHHI TECTIB MEPIIOO
CTpaTeri€ro

Classifier Accuracy | Precision | Recall AUC F1-score
CNN 79.17% 79.01% | 79.17% | 84.34% | 79.07%
Single-layer LSTM 75.00% 76.11% | 75.00% | 78.03% | 75.32%
Multi-layer LSTM 76.39% 77.15% | 76.39% | 77.41% | 76.63%
Single-layer BiLSTM 77.78% 78.84% | 77.78% | 79.13% | 78.07%
Multi-layer BiLSTM 75.00% 75.49% | 75.00% | 79.91% | 75.19%
Single-layer GRU 76.39% 76.21% | 76.39% | 84.51% | 76.28%
Multi-layer GRU 75.00% 75.00% | 75.00% | 79.92% | 75.00%
Single layer BiGRU 75.00% 74.45% | 75,00% | 78.13% | 74.48%
Multi-layer BiIGRU 73.61% 74.42% | 73.61% | 79.68% | 73.89%

Monenps Ha ocHOBI CNN nocsrina Fl-omiaku 79,07%, a omHomaposa mepexa BiLSTM —
73,89%. Inri moaeni nokaszanu F1 6musbko 76%. [pyra crpareris noaiiay HaBe[eHa B Ta0uuli 3.

Tabmuus 3. Pesynpratn knacudikamii Mera-kinacuikatopiB Ha MiAMHOXKHHI TECTIB APYTOIO
CTpaTeri€er.

Classifier Accuracy | Precision | Recall AUC F1-score
CNN 87.50% 87.43% | 87.50% | 92.40% | 87.44%
Single-layer LSTM 69.44% 71.42% 69.44% | 76.93% 69.96%
Multi-layer LSTM 72.22% 72.75% | 72.22% | 78.70% | 72.43%
Single-layer BiLSTM 72.22% 75.04% 72.22% | 78.43% 72.75%
Multi-layer BiLSTM 73.61% 74.42% 73.61% | 78.76% 73.89%
Single-layer GRU 72.22% 76.08% | 72.22% | 79.74% | 72.77%
Multi-layer GRU 72.22% 72.22% 72.22% | 80.84% 72.22%
Single-layer BiGRU 72.22% 75.04% | 72.22% | 77.93% 72.75%
Multi-layer BIGRU 73.61% 76.92% 73.61% | 80.84% 74.13%

Jpyra crpareris nonuty mnokaszana Outblry edextuBHicTh ansi CNN 3 F1 87,44%, B
nopiBHsHHI 3 mepmiol crpareriero. Moaemi LSTM, BiLSTM 1 BiGRU Takox mokaszanu kpariii
pe3yJbTaTH 3 101aTKOBUMH IIapaMHu.

BUCHOBKHA

VY oMy JOCHiIKEHH] po3po0aeHo OGaraToeTarnHuil MmiIXil y pexXuMi peaabHOro 4acy JUls
KOMIUIEKCHOI ~KJacu@ikallli aKTUBHOCTI IPOMHUCIOBOIO MEpPCOHANY Ha MIANPUEMCTBAX SIKI
BukopuctoBytoThb AKT3. BiH BUKOPHUCTOBY€ cMapT-TOJAWHHHUKH, CTEKyBaHHS Kiacu(ikaTopis,
BEUBJIET-TIEPETBOPEHD 1 TpaHCcPepHe HaBYaHHS. Po3po0ieHo arutikalito s 300py JaHUX Ha OCHOBI
CMapT-TOJUHHMKIB. 310paHO YHIKaJbHUHA HaOlp JaHUX BiA N'STH NPEACTABHUKIB MPOMHUCIOBOIO
nepcoHaiy. Slk 6a3oBuil KiaacupikaTop BUKOPUCTAHO MOMNEPEIHbO HaBueHy monaenb DenseNetl21,
ska nocsria Fl-ouinku 91,01%. [lnsa OaratoeranHoi kinacugikaliii MopiBHAIM MeTakiacudikatopu
Ha ocHoBi CNN, LSTM, BiLSTM, GRU 1 BiGRU. Haiikpamii pe3ynbTatu mnokazaiga MOJEIb HA
ocHOBI CNN 3 BUKOpPHUCTaHHSIM CIUIBHUX JaHUX JUIS HaBYaHH:, oTpuMaBiiu F1-ouinky 87,44%.

VYV MaiiOyTHbOMY IUTAHYETHCSI PO3LIMPEHHS JaHUX 1 BUKOpucTaTu riopuaHi moxaeni (CNN-
LSTM, CNN-GRU) pans mnokpamieHHs To4yHOCTI. Takuii WiAXig JIETKO I1HTETPYEThCS Ta
MacIITa0y€eThCs B IHTENEKTyalIbHI CHCTEMH YTIPABIIHHS 7S ONTUMI3allii BUPOOHUYHMX MPOLECIB.
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YK 004.89
Herpos A. ., (Hayionanvuuu ynisepcumem «JIvsiscoka nonimexuika», m. Jlvgis, Yxpaina)

MNOKPAILIEHHS AKOCTI 3B’AA3KY GSM MEPEXKI RL ATEHTOM

Anomauin: [nobanvna cucmema mobinvroeo 36'a3xy (GSM) ¢popmyemuvca b6asosumu cmanyiamu, wo Hadawoms
aboHeHmam KaHau mepedxici 018 KoMYHIKayii. 3a3euuail, AKICMb KAHAI8 KOMYHIKAYI] Haraumosyloms 0a3080i cmaHyii
HAAWMOBYIOMb 0OUH PA3 HA 8ECb ICUMMEBUL YUK, WO € NPUYUHOIO HEONMUMATLHO20 NOOILY pecypcy, i K pe3yivmam
eipuoi’ skocmi 36’s3Kky. 'V yill cmammi, nPONOHYEMbCsL BUKOPUCMAHHS azenma HasuyanHs 3 niokpinaennsm (RL) ons
OUHAMIYH020 Ni0OOPY ONMUMATLHUX napamempie 6a3060i cmarnyii. 3anpononosanuti nioxio NOKPauLye cepeoHio sIKicme
ma cmabinbHiCMb 36 A3KY 13 HE3HAYHUM BRAUBOM HA MeEPeICy.

Knrouosi cnosa: GSM, I'nobanvha cucmema MoOibHO20 36'93KY, HAGUAHHSL 3 NIOKPINJIEHHAM, 2IUOOKE HAGYAHHS 3
NIOKPINIEHHAM, MAUWUHHE HAGYAHHSI.

Abstract: The Global System for Mobile Communications (GSM) is formed by base stations that provide users
with channels for communication. Typically, the quality of communication channels is adjusted once per lifetime of the
base station, which causes suboptimal resource allocation and, as a result, inferior communication quality. In this paper,
we propose a reinforcement learning (RL) agent application to dynamically select optimal base station parameters. The
proposed approach improves the average quality and stability of communication with little impact on the network.

Keywords: GSM, Global System for Mobile Communications, RL, DRL, ML.

Beryn

He 3Ba)karoun Ha pO3BUTOK TEXHOJIOT1T MOOLITEHOTO 3B’ A3KY, MEpexi Apyroro nmokoinug (2G)
MPOJOBXKYIOTh BiAIrpaBaTH BaXIHMBY pOJib y 3a0e3ledeHHl 0a30BUX KOMYHIKAIiiHUX mOTpeO.
Oco0nmBo B yacw JneimMTy €JIeKTPOCHEPTrii Taki Mepexki OCOOIMBO aKTyajabHI 3aBISKH CBOIH
npocToTi i eHeproedexTHBHOCTI. OMHAK ONTHMI3allisg PECYpCiB y TaKMX MEpPEeXax € CKIaJIHUM
3aBJIaHHAM 4Yepe3 OOMEXEHY KUIbKICTh YaCTOTHOIO CIEKTPa, MIHJIMBI YMOBHM HaBaHTa)KEHHS Ta
HasIBHICTb iHTep(epeHIii.

[ToTouHi migxoau 70 PO3MOALTY pecypcamu 4acTo 06a3yroThes Ha (PIKCOBAHUX aJITOPUTMAX,
AK1 HE MOXKYTh aJaNnTyBaTUCS 10 JWHAMIYHHUX 3MiH cepeoBuiia. HaTomicTh MeTOAM HaBYAaHHS 3
niakpiwieHHsaM (Reinforcement Learning, RL) 3aaHi momyky onTUMaabHHMX CTpaTerii Ha OCHOBI
HaKOMHWYEHOTO JOCBily Ta B AaBTOHOMHOMY pEeXHMMI 3MIHIOBaTH MapaMeTpu Mepexi s
3a0e3meyeHHs Kpaloi sIKOCTI.

ine wiei cTaTri B po3poOli alroputMy, IO 37aT€H MOKPALIUTH SKICTh 3B’SI3Ky 0a30BHX
CTaHLIN AMHAMIYHO MOJMQIKYIOUH iX mapameTpu. /i gocsrHeHHs wi€l 1l OyayTh BUKOPHUCTaHI
pi3HI METOJIu, Taki SK METOAM NPOTHO3YBAaHHS, HABYAHHSA 3 MIAKPIIUIEHHSAM Ta CHUMYJALIT
CepeIoBHIIA.

OOrpyHTyBaHHSI BUOOpY L€l TEMH MOJISrae B TOMY, L0 MOTOYHI MiAXOIM A0 MHiAOOpY
napaMeTpiB BUMAaraioTh 3HaYHMX JIFOJCBKOIO pecypcy, IO poOUTh AMHAMIUHY MapaMeTpU3alli€ero
MPAKTUYHO HEMOXIJIMBOK. TakoX TOKH Cy4acHi JOCHIKEHHsS 30Cepe/PKeHI Ha ONTHMI3allii air-
ground Ta space-air-ground Mepex, MUTaHHS aBTOMATH3allil HaJAIITyBaHb Ha3eMHUX 0a30BHX
CTaHIII{ JINIIAETHCSA HETOCTATHRO BUBYCHUM. BUKOpHUCTaHHS METO/IIB IMiIKPIMUIFOBATFHOTO HABUYAHHS

J03BOJII€ 3SMCHIIUTH
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1.0cHoBHA YacTHHA

1.1. KpuTu4yHMH aHaJII3 JiTEepaTypPHUX AKepea

3a TeMaTUKOIO CTaTTi OyJIO MPOBEJCHO MOIIYK JITEpaTYpPHUX JDKEPEN 3a OCTaHHI 5 POKiB y
chepl KOMIT FOTEpPHHUX HayK Ta iH(QOPMAIIHHUX TEXHOJIOTIH, SKi OyJI0 TPOaHai30BaHO HUIKYE.

VY [1] 6yna 3anpornoHoBaHa RL mojenb, 110 3MiHIOE BUCOTY Ta MOJIOKEHHS aBTOHOMHOI'O
JTa4Yoro 3aco0y s HaJlaHHS Oe3MPOBITHOTO 3B'A3KY. 3MiHA IIUX MapaMeTPiB BIUIMBAE HA SIKICTh
3B's13Ky a0OHEHTIB Ta TOUHICTH JIoKasizarii. Lle He € mpsAMor0 ONTUMI3aIlIEI0 TApaMeTPiB MEPEKEBUX
napameTpiB Il CTaTMYHUX Oa30BHX CTaHIlN, a OuIblle HaBiramiiiHa MOJeNb, IO HAIlJIeHA Ha
ONTHUMI3aIliI0 TTO3UIIOHYBAaHHS JIITAIOUUX 3aC001B KOMYHIKAIIi1.

Jocmimpkennst [2] mnpomoHye ONTHUMI3alil0 BUKOPHUCTAHHS 3arajbHOrO KaHaly s
dbopMyBaHHS 3B'13Ky Mixk OaratbMma 6azoBumu crailisimu (bC) 3a gomomororo DGN-arenriB. Koxxna
bC Tpenye BnacHuii HabOip areHTiB, IO BHOWPAIOTh ONTUMAIbHI Aii I KOOPJAMHOBAHOTO
OaraTokopucTyBambkoro  miaHyBaibHHKa (CMUS)  3rigHO  JOKQIBHHX  OCOOJMBOCTEH.
3anpomnoHoBaHa apXiTeKTypa 3HAYHO 3MEHIINYE HAJIUIIKOBICTH iHQOpMalii Ta 00YHCIIOBAIBLHY
CKJIaHICTh Tpu KoMyHiKamii Mk BC aist cTBOpeHHs 4epru KOpHCTYBadiB, 10 3MEHIIYE 3aTPUMKY
Ha YTBOPEHHS KaHATy CIIUJIKYBaHHS MK a0OHEHTaMH, OJHAK HisIK HE BILTUBAE Ha SIKICTh 3B A3KY MIXkK
HUMH.

Jlxepeno [3] mpexncraBise crnpoekroBaHuid RL areHT uiss Mepexi MOBITps-3emis i3
MOIUQIKAIliEr0 Ui HECTAlllOHAPHUX JIAaHUX. ABTOPHM BHKOPHCTOBYIOTH  MOJM(IKOBAHUIN
MapkiBCbKHI TpoIeC MPUHHATTSA pIlIEHb 13 JUHAMIYHOK TapaMeTpu3alli€ro, IO JI03BOJIUB
e(eKTUBHO BHBYMTH Ta BUKOPHUCTOBYBaB BHOIp IIIIO3IB Ta IUIAHYBAaHHS KaHAJIB KOPHCTYBadiB
(GSUS) crparerito y cumynsmii. JlocnigHUKA TPOMOHYIOTH PIMICHHS, 10 HPUIIBUANIYE BHOIp
KaHaJIiB Ta IUTAHYBaHHS BUKOPHCTAHH KaHAJIIB /Uil 0araTb0X KOPUCTYBadiB, 0 3MEHIIY€E 3aTPUMKH,
Ta MOTEHLIHHO Ma€ MOKPAIIUTH SIKICTh 3B 43Ky, OJHAK TIJIBKU JUISI MEPEX TUIY HOBITps-3emMisd. Y
BUMAJIKy Ha3eMHUX MEPEK TUHAMIYHHUMHU 3MIHHUMHU MOXKYTh BUCTYNATH 3arajibHi XapaKTePUCTUKU
CE30HHOCTI CAaMUX JITaHHX.

Agtopu [4] po3poOuiTi areHTiB IIMO0KOTr0 MAIIMHHOTO HABYaHHS PO3MOAIJICHUX 0 CepBEpax
Ta MiA'€AHaHHI 10 KOHTpOJepa Mepexi, 10 BUKOHYIOTh aJIrOPUTM OTPUMaHMM 13 3arajabHOI MOJIEII,
Ta 30UparOTh CTAaTUCTUKY B pPEXUMI OJM3BKOMY J0 peanpHOoro dacy. OTpumaHi JaHi
BUKOPUCTOBYIOThCS JIJIs1 O(hJiaifH HaBYaHHS 3arajibHOi MOZEI, 1110 BUBYAE 3arajJbHUNA ONTUMAIbHUN
QITOPUTM JUIsl CTaHLIM A PO3MIMPEHOr0 IIHMPOKO-KAHAJIBLHOTO MOOLIBHOIO 3B'A3KY Ta YJbTpa-
Ha/lIHHOTO 3B'A3KY 13 HU3BKMMM 3aTpuMKamH. Taka apxXiTekTypa BHMara€ HasBHOCTI XMapHOTO
obuuncneHHs ajs 300py, oOpoOKH aHWX Ta BUKOHAHHS TPEHYBAaHHSI 3arajbHOTO areHTa, a TaKOX
aIalITUBHOTO MEPEKEBOro OOJaJHaHHA 13 I1HTENEKTYaJlbHUM KOHTPOJIEPOM Ta BIAKPUTUM
iHTepdericoM B3aEMO/II, 0 MOXKEe OYTH JOPOTOBapTICHOIO MOIU(DIKAIIIEIO ISl TPOBAMIEPIB.

V [5, 6] cTBepmKyrOTh, IO KOMYHIKAIlisl AJIsI IPUCBOEHHS KAHAIIB 3 MOTOYHHUM ITiIXO0JI0M
BUKOPHUCTOBYE 0araTo HaJUIMIIKOBOI 1H(oOpMalii B mpoleci 1 MOXK€ BHKJIMKATH KOJi3ii, IO
HOTIPUIYIOTh AKICTb 3B'13Ky Ta Mepexi. L poOoTa KOHIIEHTPYEThCS Ha ONTUMI3alii crenugpiqyHoro
tumy 6e3nposigaoro 38's13ky - WSN (wireless Sensor Network). Po6ora mokpanrye Multi-Channel
Scheduling Protocol (MCSP) ans nepconansHux , 6e3npoBignux mepex (Wi-Fi). @okycyeTrbes Ha
YCYHEHHI1 KOJMI31i TIpU TPHUCBOEHHI KaHATIIB depe3 OaraToKaHadbHUN IIAaHYBATHHHUK. TaKoxX
NPUCYTHIN APYTHid MPOTOKOJI, 1ie eHepro-epexTuBHUi RL arent mna 6aratokanansHux MAC mns
MSNs maHyBalbHHKIB, 10 3MEHIIY€E KUIBKICTh KOJI31M 1 po30aaHCOBYE 3alIMIIKK €Heprii Ha
3aJIMIITKOBI BY3JIM BHKOPHCTOBYIOYH OofHOTO RL arenrta. TpeTst 4acTHHA MPOIOHYE E€BPUCTHYHO
npumBuAmeHnit RL mpoTokos, Ais MpUCBOEHHS KaHAJIB, IO 3MEHIIY€ KUIbKICTh HAaBYAJIBHHX
iTepaliif eHepro-e()eKTUBHUM CIIOCOOOM BPaxOBYIOUHM IIMPHUHY KaHaJIIB B IUIaHYBaJIbHUKY. YeTBepTa
yacTUHa poOOTH TMPOIOHYE HOBOTO KOONEPAaTHMBHOIO MyJbTH-areHTa RL, BuUKOpuCTOBYyrOUM
NPUIIBUANICHY MOJENb JUIS TOJOJaHHS HA/TMIITKOBOI KOMYHIKaIlii KoonepaTuBHOTO areHTta RL,
BUKOPUCTOBYIOUM METOAM CaMO-IIaHYBaHHS 1 €HEpreTUYHOro IiaHyBaHHs. IIpomonyeThcst nBi
Bapialii aJropuTMy JJig CTaTUYHOTO Ta JUHAMIYHOTO BapiaHTy BUKOHAHHS. ABTOp 3asBIsi€ MPO

122



MOKpAIIEHHS! pPe3yJbTaTiB MPONOHOBAHMMHU MiAXOJaMHM Y PI3HHUX BHIIAAKaX TMPH JAEKUIBKOX
excriepuMenTax. OHaK BCi MiAXOAM MOKPANIYIOTh JIMIIE U BCTAHOBJIICHHS 3B’SI3KY, ajie HiK HE
HOKpallye caM 3B’s130K. Jlo Toro , po3paxoBaHa Ha 3HAYHO BHIi YaCTOTH, IO 3a CTaHIAPTOM
BUKOPHCTOBY€ETHCS IEPEBAYKHO JUIS IHTEPHET KOMYHIKaIIii.

1.2. IlocraHoBKa npo6JsieMH Ta ii OOI'PYHTYBaHHS

3riIHO MPOBEICHOT0 aHAaJi3y HAYKOBUX JIXKepes OyJio BUSBICHO Psiji IPOOIeM:

1. BesnocepenHio SKiCTh TOJIOCOBOTO 3B 3Ky MEpPEX HE MPHJIIJICHA JOCTaTHS yBara y
poboTax.
2. Heo0xigna ontumiszaiii HazeMHux GSM mepex.

binpuricth poOiT MPUCBIYEHUX ONTUMI3AIT PECYPCIB HE PO3TIISAIAIOTH K OJTHY 3 MOKJIUBHUX
IiJIeH, e SIKICTh 3B 53Ky Mik a0oHeHTamu. Came ToMy, IIbOMY MHUTAHHIO OyJe MpUiIeHa yBara y
IbOMY JIOCJIPKCHHI.

1.3. dopmyslOBaHHS MeTHM i 3aa4 AOC/TiAKEeHHA

Ha ocHOBI mpoBeieHOr0 KPUTUYHOTO aHali3y HAyKOBHX JDKEpes Oysio BHSBICHO, IO iICHY€E
HeoOXifmHicTh y onTuMmizamii mapamerpiB. GSM Mepex, Ta 30Kkpema SIKOCTI 3B’SI3KYy 4Yepe3
ONTHUMI3AIIiI0 PECYPCIB.

Meta poOOTH TOISTaE B MOKPALICHHI SKOCTI 3B’SI3Ky AMHAMIYHUM BHOOPOM IapaMeTpiB
Mepexi.

JIJist nocSATHEHHST METH HEOOX1THO BUPIIIATH PSIIT 33124, a CaMe:

1. TloGymoBa Mojeli MPOTHO3YBAHHS CTaHy MEPEXi B/l 3MiHU TapameTpiB 0a30BOi CTaHIIii.
2. TloOynoBa cepenoBuia 1Jisi TPEHYBaHHS areHTa
3. OuiHKa SKOCTI 3B 53Ky 13 AMHAMIYHUM MiO0POM MapaMeTpiB.

O0’€eKT A0CTiIKeHHS — 3MiHA SKICTh 3B 43Ky MPU AMHAMIYHOMY MiJ00pI MapaMeTpiB Mepexi
Ipeamer pociimxenus — wmeromn MH onrtumizanii mapamerpiB GSM  mepexi i3
3aCTOCYBaHHSIM.

1.4. Po3po6ka 0TOYEHHs Ta ApPXiTEeKTypHu

JlaHi siki OMUCYIOTH cTaH 0a30BOI CTaHIlii HA OJWH JIE€Hb MICTATh HacTymHi konoHku: "Half-
Rate Usage Rate', 'Channel Blocking Rate', 'Number of Available Channels', 'Channel Traffic',
‘Param_1', 'Param_2'. 'Half-Rate Usage Rate' ta 'Channel Blocking Rate' 1ie BukopricTaHHs MOJTOBUHA
Jianma3zoHy KaHaly JAJis 3B’ 3Ky Ta BiICOTOK 3a0J0KOBaHUX KaHAIIB Yepe3 3alHATICTh BiAMoBiAHO. L1
3HaueHHs OyJyTh 3MIHIOBATHCS B 3alleKHOCTI BiJl BUCTABJICHUX IapaMETPiB MeEpexXi, TOMY
noTpeOyroTh MOJieNi Mporuo3yBaHHs. KilbKicTh BUIPHUX KaHAJIB Ta 3HaU€HHs TpagiKy Lie iCTOpUIHI
JaH1 Ta 3aJUIIAIOTHCS HE 3MIHHUMH.

Ha sxicTe rojocoBoro 3B’si3Ky BIUIMBaIOTH 2 mapamerpa ©0azoBoi cranmii (‘Param 1',
'Param_2'), siki BU3HA4alOTh MOPOTOBI 3HAUEHHS 32 SKUX BMHUKAETHCS, Y BUMHUKAETHCS PEKUM
MOJIOBUHHOTO KaHaTy 3B’s3Ky. SIK 3p0o3yMmino 3 Ha3BH, Ha OJHOTO aOOHEHTa MPHIAJa€e MOJIOBHUHA
KaHaJy 3B 3Ky, a OTK€ TipIIOI0 SIKOCTI 3BYK. J[pyruii mapameTp BiAMOBIA€ 3a OPIT HABAHTAKECHHS,
IPH IKOMY TIOBEPTAE€ThCS BUKOPUCTAHHSI IOBHOTO CIIEKTPY KaHAIly Ha OJIHOTO aOOHEHTA.

Takum yMHOM MM OauMMo, IO MPH 3MiHI HapamMeTpiB Mepexi, CTaH L€l X Mepexi

3MIHIOETBCS, & OT)K€ HEOOXiAHO HEOOXiHO IIe BPaxOBYBaTH. 3Bakalouu Ha Iie, Oyino oOpaHo
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HABYAHHS 13 MiAKPIIJICHHSIM, MI0 Ja€ MOXJIHMBICTh ITEPATUBHO OHOBIOBATH CEPEOBHILE Bif
B3a€MO/II1 3 HUM areHTa.

Jiis nmepenbadeHHs MaiiOyTHIX CTaHIB cepeIoBHUIIA HEOOXiTHA MOJIETb, SIKa 3/1aTHA JOCTATHHO
TOYHO TPOTHO3YBAaTH 3HAYCHHS Ha JOBIHi ropusoHTanbHHi nepion. N-HIits npeacrasiena y [7]
JI03BOJISIE HA OCHOBI KOBapiaTiB MPOrHO3YBaTH 3MiHHI IMapaMeTpu Mepexi. Takum YMHOM L Mepesxa
BIJIMIOBIIa€ 32 OHOBJICHHS CEPEOBHINA arceHTa KOXKEH pas, SK HOro il BiIPI3HAIOTHCS Bif
ICTOpUYHHX.

OCKiNBbKHM areHT Mae CIpaBy i3 CEpelOBUIIEM Yy 6 3MIHHHMX Ta Ma€ JIMIIE JIBa Iapamerpa
B33a€MO/Ii1, a TAKOXX HeTepepBHUI MPOCTip Al (OCKUIbKH 3HaYeHHs 000X MapameTpiB y Mexax Bix 0
10 1.0), To Oysi0 00paHO apXiTEKTypy M’SIKOrO KPUTHK IpejicTaBiicHa y [8].

1.5. Pe3sysbTaTH

Mognenp nporuosyBanus crany N-Hits Oyna natpenoBana i3 RMSE mnoxu6koro 0,052. Ha
OCHOBI 11i€1 MOJIeNi B3ke OYJI0 3alyIIeHO TPEHYBaHHs areHTa.
AreHT OyB OTpUMaHUN HUIAXOM TpeHyBaHHs npoTsaroM 100 enox mo 4 tucsyi itepamiid. [licns
[LOTO HOT0 OYJI0 3aCTOCOBAHO JI0 TECTYBAJILHUX JIaHuX, 3 iHIuX bC. B pe3ynbTari 6yno oTpuMano
TPOXH BHIII 3HAYEHHS OJOKYBaHHs a0OHEHTa B MEXax MOXUOKH, sIK 300pakeHO0 Ha TicTorpami Ha
Pucynok 1.

TCH Blocking Rate, BH Blocking Before
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Pucynok 1. T'icrorpama kigbkocTi 6J0KyBaHHS IPH 3aCTOCYBaHHI areHTa (3J1iBa) Ta rnepe HuM
(cipaBa).

Sk 300pakeHo Ha PUCYHOK 2 , IKICTB CYTTEBO MOKpPAIIHIIACS, SIK BUTHO 13 PO3MOALTY 3HAaYeHb
BUKOPDUCTAHHSA TIOJJOBUHHOTO KaHally. 3HAa4YeHHS 3MICTWIM CBId po3Mojau, Je Moja IpHu
HanamTyBaHHs areHta Mix 60% Tta 80% kananiB y nopiBHsHHI 13 90% Ta 100%. Takox pyuHi
HaJIAlITYBaHHS PU3BOAWIM A0 BukopuctanHs Bcix (100% HR) kananis HR-pexumi y maitxxe 18000

a0OHEHTIB, TO/Il IK aBTOMATHYHI HaamTyBaHHs MeHIe Hix 1000 aboHEHTIB.
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Pucynok 2. Ticrorpama KiIbKOCTI BHUKOPHUCTaHHS IIOJOBUHHOI'O KaHaly 3B SI3KYy IpHU

0

rapameTpax areHra (3JiBa) Ta 10 [boro (Crpana).

3riJIHO OTPUMAHUX PE3yJIbTATiB MOXKHA CTBEPIKYBATH, IO SKICTh 3B’SI3KYy JJIsi aOOHEHTIB
3pocia, OCKUJIBKM 4YacToTa Ta BIJICOTOK BUKOPUCTAHHS JUIsl 3’€IHAHHS TMOJIOBH JIialla3oHy
3MmeHmmnaca. OHaK € He3HaYHe 3POCTaHHs Y KIJIbKOCT1 OJIOKYBaHHSA 3’ €JHAHb.

3arajgom, aBTOMaTHYHHE MiA0ip mapaMeTpiB Ha OocHOBI RL-areHTa m03BOJIMTH 3MEHIIUTH
HaBaHTAXXCHHS Ha MOJbOBUX IHXEHEPIB ONepaTopiB MOOLIBHOIO 3B’SI3KY, 30UIBIIMTH CTAOUIBHICTD
Ta HE3aJIeKHICTh 0A30BHUX CTAHIIIHM Ta MOKPAITUTH SKICTh 3B’ SI3KY Mik a0OHEHTaMHU.

2. BuchHoBxu

3anponoHoBaHMM MiAXiJ 10 onTUMi3aii pecypci 6a3oBux ctaHuil GSM mepexi 103BOJIUB
3MEHIIMTH BUKOPUCTaHHS MOJOBUHHOTIO Jllana3oHy KaHairy Ha 19.27%, 13 3011b1IIeHHAM OJIOKYBaHHS
Ha 0,9%. ABTOMaTHYHE HaNAIITYBaHHS IapaMeTpiB Mepexi 3a ponomororo RL areHTa 103BOIMIIO
CYTTEBO MOKPAIIUTH SKICTb 3B’ 3Ky AJI1 aDOHEHTIB HE3HAYHUM 301IbIIICHHAM OJIOKYBaHHS.

JUis moabIIuX AOCHIPKEHb IJIaHYEThCS 3MEHIIUTH KUJIbKICTh OJIOKYBAaHHS HE 3MEHILYIOUH,
M HaBITh MOKPALIYIOUYHU SKICTh 3B’3KY, a TaKOXK PO3pOOMTH OLIBII TOYHY MOJENb IependadyeHb
HACTYIHMX CTaHIB CepelOBUILA, I OUIbII HAAIMHOTO areHTa.
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Pama3zanos C. K. (Cxionoykpaincekuii nayionanvhutl ynieepcumem imeri Borooumupa Jlans,
m.Kuis, Yxpaina)

KOI'HITUBHI TEXHOJIOI' Ii IPUHATTS IHTEJEKTYAJIbHUX PILNEHDb ¥
HEUPOEKOMOMIKI Y CKIAJHOMY IHOOPMAIIMHOMY CEPEJOBHUII

Anomauia. B ymosax yighposusayii cyuacHoi eKOHOMIKU Ma WUPOKO20 BUKOPUCTNAHHA CUCHEeM | MeXHON02il
WMYYHO20 [HMeNeKmy 30amuicme He RpOCmo 00 MEOPHO20 MUCNEHHS, d 30amHiCMb 00 HePOPMANbHUX BUUHKIS,
HeopOuHapHux piuiensb ma Oill, H08086e0eHb — OCb 207106HA 8UMo2a 00 ¢haxieyis. I mym nepuie micye eucmynaiomo
meopemuyHi 3HAHHA, CHPUAIOMb PO3EUMKY pDO3YM0G020 anapamy. Hasuumu pozmipkogyeamu camocmiunHo 3
VPAXYBAHHAM AHANIZY PISHUX HABUAHb, MeOopill | No2us0i6 YUeHUX-MmeopemuKie cmae Haunepuum 3a60aHHIM Wooo |
BUKNIAOAHHA eKOHOMIUHOT HayKu. 1106e0inK08a eKOHOMIKA — 8IOHOCHO HO8A HAYKA MA HASYANbHA Oucyuniina. Bona mae
weuowe MincOUCYUNIIHapHull Xapakmep i 3HaAX0OUMbCA HA CIUKY 080X HAYK: NCUXON02IT MA eKOHOMIKU, o 00360J14€
BUABUINU NCUXONOIYHY OCHOBY MEMOOON02Ti NPUTIHAMMS Piluenb TI0OUHOI0 MA THMUMU a2eHmamu. 3apas He MOJCHA He
bpamu 00 ysazu no8ediHK08Y eKOHOMIKY, OCKIIbKU NOBEOIHKOBUU NIOXI0: NPUMAMAHHUY OIIbHOCMIE PI3HUX CY0'€kmig:
8i0 [HOusioa ma @ipmu 00 PUHKIE Ma pecioHi8; CUCMEeMAMUYHO HOBMOPIOEMbCA MA VYCKIAOHAIOMbCA, 00380JAE
BUABUMU  2TUOUHHI MOMUBU OITbHOCMI A2eHMI8, AKI 3a8x#COU HACMYNHUX KAHOHAM MPAOUYiliHOl eKOHOMIKLL.
Io6edinko8y eKoHOMIKY OOHeda8Ha 6azamo Xmo 88adCA8 HAYKOI OpPYy2OpsAOHOI0, Heo008'I3K08010 — MAKow codi
HEeNoBHONIMHBLOK POOUUKOI 00pOCaol mpaouyitinoi exonomiku. OOHAK NPUXUTbHUKU OCMAHHBbOI 8ce JHC maKu
BUZHABAU, WO THOUBIOU YaAC 8I0 YACY NOBOOSAMbCS HEPO3YMHO, HePAYIOHANIbHO, ajle HA ye 3a8dcou 0yiu meopemuyti
o0okasu.

Knrouogi cnosa: nosedinkoga ekoHOMIKA, HEUPOEKOHOMIKA, HEUPOMAPKEMUHe, iHmMespatbHa Mooeib OUHAMIKU
nogedinku, nogedinkose mooeniosanns CY ma I1P, modenv npoyecy ubopy ma nputiHammsi piutensb, MidcoOucCyuniinapHe
00CNiOJCEH S | CUHMEe3, eKOHOMIKA THHOBAYIL.

Abstract. In the context of the digitalization of the modern economy and the extensive use of artificial intelligence
systems and technologies, the primary requirement for specialists is not merely creative thinking but the ability to engage
in unconventional actions, make extraordinary decisions, and introduce innovations. Theoretical knowledge, which
fosters the development of intellectual capacity, takes center stage. Teaching individuals to think independently while
analyzing various doctrines, theories, and perspectives of academic scholars becomes a key objective in teaching
economic science. Behavioral economics is a relatively new science and academic discipline with an interdisciplinary
nature, existing at the intersection of psychology and economics. This allows for uncovering the psychological foundation
of decision-making methodologies employed by individuals and other agents. Today, behavioral economics cannot be
ignored, as its approach: is intrinsic to the activities of various entities, from individuals and firms to markets and regions;
systematically recurs and becomes more complex; and reveals the underlying motives of agents' actions, which often
deviate from the traditional economic norms. Behavioral economics was, until recently, considered by many as a
secondary, non-essential science—a mere adolescent relative of mature traditional economics. However, even proponents
of traditional economics have acknowledged that individuals occasionally act irrationally or unreasonably, and such
behavior has always had theoretical explanations.

Keywords: behavioral economics, neuroeconomics, neuromarketing, integral behavior dynamics model,
behavioral modeling of SU and PR, choice and decision-making process model, interdisciplinary research and synthesis,
innovation economy.

Bcemyn. Ha choronHilHifi AeHb €KOHOMIYHMN PO3BUTOK 3a3HA€ MEBHUX TpaHchopmarii,
JoKepena SIKUX BIACTEKYIOThCS y TIOBEIIHKOBUX PEAKIIISX Ta OYIKYBaHHSX JIFOJICBKOTO MO3Ky. Came
Ha OCHOBI HOBOTO 3HAHHS MPO Te, AK MPAIl0€ MO30K, TOYMHAIOThH 3MIHIOBAaTHCS YSBIEHHS PO T€, SIK
JroMHA npuiiMae pimenHs. i BUCHOBKM HEMHMHYyYE 3MiHIOIOTh YSBJIECHHS PO 3aKOHOMIPHOCTI Ta
MPUHLINIY (QYHKIIOHYBaHHS €KOHOMIKH. Bee 11e 3B0auThes 10 popMyBaHHS HOBUX 3B'I3KIB HAa CTUKY
COLIIAJILHOTO CIIPUIHSATTS Ta HOr0 EKOHOMIYHOTO Pe3yJIbTaTy, CTBOPIOIOUHN T'aly3b HEMPOEKOHOMIKH.

BuxopucTaHHs KJIacCMYHUX €KOHOMIYHHMX METOJIB B IHIUX HAayKax HAa CbOTOAHIIIHINA JEHb
BUKJIMKAJIO 3BOPOTHHH €eKT — eKOHOMIKa BKe MpuitMae 6e37114 METOAIB 1 KOHIIETIiH, po3po0sieHnX
TICUXOJIOTIEI0, COITIOJIOTIEID 1 HaBITh OOTaHIKOI 3 MexaHikor. OJHUM 13 TaKWX HAMPSMKIB 1 €
HEHPOEKOHOMIKA — Tajly3b HAyKH, SIKa 3aiMa€ThCs BUBUCHHSIM HEUPOO10JIOTIYHUX 3aca] MPUHHATTS
pillieHb.
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HeiipoekoHnomika siBisie COO00 MKAMCUMIUTIHAPHUN HAIPSAMOK, SIKUH € 3IUTTSIM €eKOHOMIKH,
TICUXOJIOT1] Ta HEHpPOHAyKH y BHUBYEHHI NPOLIECY MNPUUHATTS pimeHs JoauHow. s obmacts
JIOCJTIJDKYE OCHOBH €KOHOMIYHOI TTOBEIIHKHU IIUISIXOM 3a0XO0YEHHS CITIBPOOITHUIITBA Ta TUCKYCIH MiX
HAYKOBIUIMH y Taly3i IICUXOJIOTIYHHX, EKOHOMIYHUX, HEBPOJOTIUHUX Ta iH(pOpMaIiiiHUX HayK, B
TOMY HayK IITYYHOTO iHTEJIEKTY.

HetlipoexoHOMiKa TaKOXK 1 HEHPOMAPKETHUHT BUBYAE MPOIEC MPUUHATTS PIlIeHb MPU BUOOPI
JIbTEPHATUBHUX BapiaHTIB pilIeHb, PO3NOALI PU3UKY Ta BUHaropoau. HoBaTopcbkuM € Te, 1o came
HEHPOEKOHOMIKa BUKOPUCTOBYE €KOHOMIYHI MOJIENI Il BUBYEHHS PEAKIliH JIFOJACHKOTO MO3KY, a
TaKOXX JIOCATHEHHS HeWpoOiosorii s moOyAOBM E€KOHOMIYHHMX 3aKOHOMIPHOCTEH 1 MOJEJeH.
HeiipoekoHoMiKa € IHTEPAUCUUIUTIHAPHUM MOJIEM JTOCIIIKEHb, SIKE TOEIHYE MOHATTS 3 €KOHOMIKH,
ncuxosorii Ta Heiipobionorii. Ii Mera monsrae y BHBUEHHI MO3KOBHMX MEXaHI3MiB, fKi JIeXkKaTh B
OCHOBI TPHUHHATTS pillleHb, OCOOJIMBO B MPOOJIeMax MAapPKETUHTY 1 CKJIQJHUX EKOHOMIYHHX
cutyarnisix. BukopucrtaHHs iHCTPYMEHTIB HEHPOEKOHOMIKH y MPUHHATTI €KOHOMIYHHMX pillleHb
BIJIKPMBA€ HOBI MOMJIMBOCTI JJIsl TJMOIIOrO pO3yMiHHSI €MOIITHUX Ta KOTHITHBHUX (DAKTOPIB, 110
BIUTMBAIOTh HA IMIOBEIIHKY 1HBECTOPIB, TPEHACPIB Ta IHIIUX areHTIB PUHKY. METO 1M HEUPOIMIKUHTY
Ta eKCIEPUMEHTANIbHI IMPU J03BOJIAIOTH JOCIIITHUKAM BUBYATH aKTHBALlilO IEBHUX 00JacTell MO3KY
y BIJTOBIb HA Pi3HI CTUMYJIM Ta CUTyallii. AHaJIi3 MO3KOBUX peakiliii Ha pi3HI aKTUBU Ta PUHKOBI
YMOBH JI03BOJISIE PO3POOHUTH MOJIENI, IO BPAaXOBYIOTh 1HIUBiAyallbHI TIepeBaru Ta pu3uK-mpoiib
MapKeTOJIOTiB Ta iHBecTOpiB. EMoIIii BiAIrpatoTh BAXKIUBY POJb Y IPUHHATTS piteHsb. JlocaimkenHs
[OKa3yloTh, 110 €MOLINHHI peakiii MOXYTb NMPOBOAUTH OLIHKY PHU3MKY, NMPUMHATTS pILIEHb PO
KYMIBIIIO YH MPOJAXKY aKTHBIB, 1 HaBITh (JOPMYBaHHS I[IHOBUX YSBJICHb. PO3YyMiHHS X €MOIIHUX
(dakTopiB T03BOJISIE PO3POOUTH CTPATETIi, IKi BpaXOBYIOTh EMOIIiifHI peakilii pHHKOBUX arcHTIB.

Po3po0ka iHTerpoBaHuX i€papXiyHUX IHTEIEKTYaTbHUX MOJIENEH JUIsi CUCTEM YIPABIIHHA 1
OPUNHHATTS pilIeHb HA OCHOBI BUKOPUCTAHHS MaTeMaTHMYHUX METOAIB, MOJeNel Ta IHHOBaLIHHUX
TEXHOJIOTI Ta CHCTEM B CyYaCHHMX yMOBaxX HECTAaOUTPHOCTI Ta KPH30BHUX SIBUI € AKTYyaJIbHOIO
npo6sieMoro. CUHTE3 IHTErPOBAHUX MOJIEIeH 3 ypaXyBaHHAM I'yMaHITapHUX 1 KOTHITUBHUX 3MIHHUX
JUISL OLIIHKM CTaJIoro 1 6€3MeYHOro po3BUTKY TaKOXK € BaXKIIUBUM 1 aKTyaJIbHUM.

B nmanoi crarTti Bmepmie po3MNISHYTO y3arajibHeHa 3-X piBHEBa CTPYKTypa iepapxiduHoi
IHTErpabHOI IHTENEKTYaIbHOI CUCTEMHU YNPABIIHHSA 1 NPUIHATTS PILIEHb Y CKJIAJHUX CHCTEMax.
[Tpu 1bOMY BpaxoBY€ThCS: BIJIMB 30BHILUIHBOIO CEpeloBUINA Ha 00'ekTa ynpasiinHg (OY) 3 1Boma
BUXOAaMHU («KOPHCHUMY» 1 «IIKIUIMBUMY), OV sK 30BHIIIHE CEpelOBUILE Ui OCOOM MPUHHATTS
pimeHs (OIIP), 3ampomoHOBaHO iHTeNEKTyajdbHa CYyIEpBI3OpHAa CHUCTEMa, cHucTeMa OO0poOKw,
MO/JIETIOBAaHHS, YIIPaBIIHHS Ta MIPUHHATTS PIlLIEHb, 3 YPaxXyBaHHIM MOXJIMBOCTI MOJIEJIFOBaHHSI BC1X
PIBHIB CHCTEMH, MOJEIl CKJIQJHOTO KaHaly BHMIPIOBaHb Ta CIOCTEPEKEHb VY BUIVIAIL
MYJbTUIUTIKATUBHO — aJUTUBHOI CyMillli BHUIIAQJKOBHMX NpOIECiB Ta (akTopiB, 3 ypaxyBaHHIM
BEKTOpa 3 HaOOpy: MOJeNi CKJIaJHOTO KaHaly BHUMIPIOBaHb Ta CIHOCTEPEXEHb Yy BUIJIII
MYJIbTUIUTIKATUBHO — aJUTHUBHOI CyMILIl BHIIQJKOBUX MpoIeciB Ta (aKToOpiB, 3 ypaxyBaHHAM
BEKTOpa 3 HAOOPY: KOCHIMUGHI, eMOyilti, pedhrekcusHi, OyxoeHi ma emuuni 3sminHi («IapaMeTpu
HOPSIKY»), @ TAKOK MOJIENTl AMHAMIKHU MPEACTaBIEeH] 1 B pO3MOIIEHUX KOOpIUHATAX.

VY3aranbHeHa CTPYKTypa iepapxiuHoi IHTeIeKTyaIbHOI IHTErpalbHOI CUCTEMH YIIPABIIiHHS Ta
NPUMHATTA PIlIEHb y CKIAIHUX cucTeMax (puc. 1).

llosnauennss na puc. 1: B/C — BuwmiproBanus/Cnoctepexenss; G(t) — uiip (uijiboBa
ycranoBka) Cymepsizopa; U(t) - mpuiiHsaTe pimeHHs; u(t) — Bekrop ympasiinHs;, W(t) — BekTop
30BHIIIHIX 30ypenb; R(t) - pecypcu CV Ta I1P; z(t) - BexTop "mkiamuBoro" Buxoxay; &(t) — BeKTop
MEePELIKO/BUNIAIKOBUX 30BHILIHIX 00ypeHb BumiproBanHs/CriocTepexeHHs] BEKTOP «KOPHUCHOTO»
BUXOJY; y(t) — BEKTOp «KOPHUCHOTO» BHXOHYy; Y(t) — BEKTOp BUMIPIOBAHHS Ta CIIOCTEPEKEHHS
BEKTOpa cTrany cucreMu npuitHATTs pimens (CIIP); X(t) = [k(t), e(t), 1(t), d(t), €(t)] — BekTOp cTany
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cuctemMu AuHaMmiku moBediHku (iHTenektyansHoi CIIP), mpuuomy k(t), e(t), r(t), o(t), €(t) —
KOTHITHBHI, EMOIT11iH1, pe(JICKCUBHI, TyXOBHI Ta €THYHI 3MiHHI («ITapaMeTpH Mopsaaky»). [Ipuaomy,
sBexktop X(t, q) = {xi(t, q), i=1,...,n} — me mpocroposi 3miHHI cTanu iHTenekTyanapHoi CIIP abo
Cy0'exTa ynpasiinHs; X(t) — BekTop crany OVY.

wit)
Pecvy ov . R By 1
) vpcH 06’ i (OV). Kopucumi: Brxi
- x(z) «TTTrci-rt-_rmnﬁ»

OBRHIITHE CEPENOBHIE TIA OIIF
{3 ENOBHINE T 7 BHXIT >

-~

(B¢ ] [5c | Pegexcis o 7 o

v

[ k()
R(t) . . ;

P Cy0'exkrynpasainuasa ta ITP
(CY ma IIP).

X(t, q)

Bl IHTEPSELC [ 1 vo
IHTEIeKTYAIBHA CHCTEMA, CHCTeMA 00pPOOKH,
MOIENIOBAHHS, YOIDPABTIHHA Ta NPHAHATTS PULIEHD,

TlLs® |
g BHMIPIOBAHHA _Mgma,gmm \\ CIMOCTEPENEHHA

& PMOGU MA OOMEHCEHHA. r
CYIIEPBI3OP

Pucynoxk 1. Y3aranpHeHa cTpyKTypa 1€papXi4HOi IHTEJIEKTyalbHOI IHTErpaJIbHOT
CHCTEMH YIPaBJIiHHS Ta NPUHHATTS pillIeHb

1. Micye Kocnimonozii 6 mexnonoziax ma cucmemax wimy4Ho2o iHmeaexkmy
01 RPUIHAMMA YRPABGIAIHCOKUX PilLEeHb.
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Pucynok 2. Y3aranpaeHa cxema: KorHITOIOT S Ta INTYYHUH IHTEIIEKT.

st y3aransnaena cxema € koptex: <@, I, C, JI, A, HD, II, b, M, K, C>, ne: ® - ®inocodis,
IT - TIcuxomnorisa, C - Corionoris, JI - Jlinreictuka, A - A"tpomnonorisi, A-® — AHTPOIOIOro-
¢inocoderka miacucrema (komnonenta), H® — Heiipodizionorisa, I — Iltyynuii inTenexkt
(artificial intelligence, Al'), b — Bionoris Ta Biomoriuni gocmimkenns, M-K-C — Maremartuka-
Kibepnetuka-CunepreTika, OCHOBHI IHCTPYMEHTH HAYKOBOT'O MI3HAHHS Ta PO3BUTKY.

YWhat is Artificial Intelligence? Apxuenas xonus om 18 noaéps 2015 na Wayback Machine FAQ
om [xcona Maxxkapmu, 2007

2. Mooenv cmoxacmuunoi ounamiku OY y npocmopi cmanie

[TomiTMO TakoX, 1110 AUHAMIYHA CUCTEMa Ma€ CHHEPTeTUYHUI (200 KiOEpHETUYHHMIA) OTIHC,
AKIIO eeKTUBHO MO0y I0BaHMi oniepaTop D, € Takuii, 110 CTaH CUCTEMH B KOKEH MOMEHT Yacy t €
(tO,T(tO))Moxce OyTH MoOyI0BaHHil 1O 3HA4YEeHHSIX BeKTOpy X(T),T € (ty,ty) 32 yMOBH, 1O YCi
30BHIIIHI i1, 10 YIPaBIAOTH, (hikcoBani [10, 11]:
x(t) = D(x(1),&,n,u),t € (tO,T(tO)), T € (tq, ty), 1)

ne €(t,r)- BUMagKoOBa Mis 3 BiIOMHMH IMOBIpHICHUMH XapaKT€PHCTHKAMU n(t,r)e G,7 Iis, 3aJaHa

MIpOIO HEBU3HAYEHOCTI Gy, U € R¥ - nii, mo ynpasnsioTs, I - IpOCTOPOBA 3MiHHA.
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3acanvuuil 6uensio moodeni ounamixu OY: dx(t)/dt=F(x(t), u(t), w(t), a(t), t). (Y pasi
TEXHOTEHHOTO MpomucioBoro OV, ToOTO PIBHSHHS IWHAMIKKA TPH OOIIKY TaKOX €KOJOTTYHHUX
3MIHHHX/(aKTOpIB, TUB. y podoTax aBTopa [1-6]).

[Tix ¢a3oBuUM cTaHOM CHCTEMHU OyAEMO PO3YyMIiTH BEKTOp X = (X1,X5,...,Xp), € X;, 1 =
1,...,n — CyKyNHICTb JaHUX, XapaKTEPU3YIOUUX i-i cexTop cuctemu. [Ipuryctumo, 1o BCci ceKTopu
OCHAIIIEH] IEIKUMHU BOKEISIMU YIIPABIIHHA: U = (Uq, Uy, ..., Uy)

Kosxen 3 mepepaxoBaHHX IapaMeTpiB, B CBOIO Yepry, sIBIsi€ cOOOI0 BEKTOp, CKIAJCHUH 3
YHCJIOBUX 3HAYCHb IMOKA3HHKIB PI3HUX XapaKTEPUCTHK JMHAMiKK cucrtemu. Hexait [to, tk] -
PO3IJIAHYTHI TIEpiof PO3BHUTKY cucTeMH. [l03HAYMMO dYepe3 ¢ BEKTOP MEAKHX 0JaTKOBHX

napaMeTpiB, SKi BU3HAYAIOTHCS NUIIXOM IMPOTHO3YBAHHS 13 3aCTOCYBAaHHSIM CTATUCTUYHHUX JAaHUX
CHCTEMH, a00 BOHU - KOHCTAHTH.

TakuM 4MHOM, JOCIIJIKY€EThCS 3aIEKHICTh KOKHOT 3MIHHOI X;, I = 1,...,n Bi ynpaBiIstounx
3MIHHUX U; CTaHIB CUCTEMH 1 BEKTOpa mapameTpiB §.

30kpema, JiiHeapizoBaHa MOJIEIh CUCTEMU Ma€ BUTIIS:

dx(é,
—xi 2 = AOx(&, ) + BEOu(E, ) + c(Ow(D),

ne  x(&t) €R™, u(é,t) € R™, w(t) €RR, A(§) € R™™, B(§) € R™™, C(§) € R™,
A(®) = [Aij(f)], B(¢) = [Bij(f)] - MarpuIl 3 TapaMeTPUYHOI HeBU3HaueHIicTio; X(&,t) =
[x;(&,t)]- Bekrop cramy cucremm; u(é,t) = [u;(é,t)] - Bekrop ympaBminas; w(t) —
BEKTOP €K30T€HUX BO3MYILEHUH, ¢ - BEKTOpP CTOXaCTHYHHUX MPOIIECIB.

3ajaya CHHTE3y ONTHUMAIBHOTO YIPABIIHHSA CTOXACTHYHOK JAWHAMIYHOK CHCTEMOIO
CTABUTHCS TAKUM YMHOM: 3HAITH 3aKOH ONTUMAJBHOTO YIIPABIiHHs y BULIIsiAi [7-9]:

a($,t) = N[x(5, 1] ()

a0o A7 THIHHOTO BUTMIAAKY:

us,t) = —Lx(s,v), )

a IbOBUH (YHKITIOHAT AJISl ONTHUMI3alii (MiHIMI3aIli1) 3a1a€ThCS Y BUTIIAIIL:

J = [, {I (76, 00x(E, B +uT (6, ORu(E, D)t} p()ds,  (3)

ne N - HeniHiiHUI oneparop.
ToOTo micns ycepeIHIOBaHHS MAa€MO KpUTEPiil ONTUMAILHOTO YIIPaBIIIHHS K

J@) = E[[,* (" (§,0)0x(§, £) +uT (€, ORu(, ))dt] = min. (3%)

VY mpocToMy BUMNAJIKy MOKHa BUKOPUCTATH JIiHIIIHE PIBHAHHS CIOCTEPEXKEHHS Yy BHIJIAMIL:
y(t) = H{®)x(®) + n(D).

VY upomy piBHSAHHI criocTepeskeHHs H (t) € cToXxacTHuHa MaTpULs CIIOCTEPEXeHHs [7], Ky
MOJKHA 3a/IaBaTH 3 MPAKTHUYHHUX MIpKyBaHb, a 7)(t) € mporec TUIY «OiMMi mIym», SKHA MOXe
3aJaBaTHUCA 3a JaHUMHU CTaTUCTUKU. [IpH 1[bOMyY 3a MPUHIMIIOM PO3/iUIEHHS, Tpeba BUPILIMTH J1Ba
camocTiiti 3aBaanns [8-10].

VY panHiX po0OoTax aBTOpa PO3JLTY 3aBJaHHS ONTHUMAJIbHOIO OLiHIOBaHHS ((inbTparii) i
iIeHTudikanii B~ MYJbTUIUIIKATUBHO-aJUTHUBHUX  CyMilIaX BHpINIEHAa BUKOPHCTOBYIOYH
iHTerpansHuii onuc GineTpy [7]. Ilpore, 3aBaanHs GuIbTpaLii MOXKHA 1 3pyYHO BUPILITYBAaTH TaKOX,
BUKOpHUCTOBYIouM (inbTp Kanmana nns miHiHOTO BHmNanky 1 ¢uibrpy CrpaToHOBHYA JUis
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HEJNHIAHOI 1paBoi YaCTMHU pPiBHAHHA AuHaMiku [7-10]. OuiHkHM cTaHy 3HaXOAATHCS SIK YMOBHI
cepenHi 3 MoOyIOBOIO 1 PIMIEHHAM HENIHIMHUX JUCIIEPCIMHUX PiBHSIHBb TNy Pikarti. inbTp mae
pilIEeHHS] CTOXAaCTHYHOTO MU(epeHIiaTbHOro piBHAHHA. BiH Moxe OyTu peanizoBaHuid y BUTIISAIL
BIZIOMOI CHCTEMH i3 3BOPOTHHM 3B'S3KOM IO LIUTBHOCTI PO3MOIUTY MOYaTKOBUX yMOB. OTpuMaHa
OLIIHKa cTaHy X (t) BUKOPUCTOBYETHCS IIPHU PillIeHH]1 APYTOi 33124l - ONTUMAILHOTO YIPABIIHHS TUITY
(t) = —L(t)x(t). Sk Bxke BiA3HAYAIOCS, 3aBIAHHS ONTHUMAJIBHOTO YIPAaBIIHHS 3a3BHYAM
CTaBUTHUCS HA OCHOBI mpuHIuIy bemnmmana abo npuHmmy mMakcumymy [7-10]. ¥V sikocTi Kputepiro
MOXXYTb 3aCTOCOBYBATHCS Pi3HI (DYHKIIIOHATIN SKOCTI, a TAKO BEKTOP (PYHKITIOHATIB.

3. Mooenw nenininnoi ounamixu nogedinku OIIP.
Y3acanvnena mooenv ounamixu cmany/noeedinku cyo'exkma I1P, moomo, OIIP

Mooenv ounamiku y npocmopi uacy:

Nx,
d
axi(t) = 2%} X;(©) | Sx,(Rx,) — Z Bij(Rx,)X;(8) | + X; (O)nx, () + wy, (8),
=1
i = 1,....,Nx.

4

d _ —_ N ;
= Ry, (6) = A5} Ry, (0) | R, = (R, () + 2,21 oy, (1, S, DRy, (1)),
i=1, 2, ..., Ny,.

Ilpocmoposa mooenv ounamixu nogedinku OIIP:
Nx

i J
d
ZX(6,9) = 2476 DXeCt @) | S5, (Re) = D a(Re) | [Xett |+
j=1 k=1
62 it i _—
¥y diz% +w;(t,q) + bju;(t), X;(0,q9) =x;(q), i =1,n,
4R (t) = A1 R R — (R Nxi 1.5, D)R
=Ry, (8) = 2z} Ry, () | Ry, = (R, (8) + ;21 7, (1,5, DIRy, (),

i=1,2, .., Ny,

ae X(t, ) — BEKTOp CTOXaCTUYHHX MPOCTOPOBUX 3MIHHHX CTaHIB CKJIAIHOI CHCTEMH
(HampuKIIaa, CTaH «CBIIOMOCTI», TOOTO «MO3KY»); ( = (i, (2, (3) — TOYKa y MPOCTOPi CTaHIB
(HaMpUKJIaJ, KOOPIMHATH TOYKH Y MO «MO3KY»), (N;, W;) - CTOXaCTHYHI MYyJIbTUILTIKATUBHI Ta
aIUTUBHI OOYPIOIOYM CKJIAJIOBI MOJIEN; {al-j(RXi)}- napaMeTpu B3aEMOJIIi MIX MiJcHCTEMaMHu
(Momamu); {d;;} - koediienTn qudys3ii, 10 BU3HAYAIOTH PiBEHb PO3MOILTY 3MIHHUX cTaHiB; Sy (R) -
CyMapHe MakcHUMallbHe (FpaHWYHO JONYCTHME) 3HAu€HHs BeEKTOpy X; {A}il} - CYKYIHICTb
napaMmeTpiB/(akTopiB, sIKI IPU3BOAATH JJO XaOTUYHOCTI.

TyT BUHUKae BiJIoMe 3BOPOTHE 3aBJIaHH: OLlIHIOBaHHS ((DiabTparliii) Ta ireHTudikamii, To0To.
BU3HAYeHHS OWIHKK X (t,q") Bektopa X(ty,q*) Ha OCHOBI ToOeTamHOi 06POGKM HAGOPy
criocrepexkenb 1 mpu  ¢ikcoBanomy q* € Q,to6to. {y(t,ti)|telty, tyl, te[ty, tusel, -} I
aIalITUBHOTO YTIPaBIIiHHSA, a MOTIM 1 CHHTE3y caMoro BekTopa ymnpaBiiHHs Ug = U(ty) =
L[X(te,q)] k=1,2,... [7-9]

4. Mooens ounamiku Kanauy eumipio8ans / CHOCMEPEHceHb:

a)lloBeninka mroguHKU/Cy0'eKTa 3aMeKuTh Big Habopy dakrtopiB: <biosoriuHoro,
ComianbHoro, [Icuxonoriunoro, Koraurisaoro, ®@inocodcenkoro, [IpaBoBoro ta iH.>.
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Mo30K JIOAMHU MOXE CTBOPUTH «HOBE», TOOTO. L0 HE iCHye paHimie. M0O30K CTPyKTYpPHO
nepeOyA0BY€EThCS Ta cToXacTHuHO. CHTHAIIM Yepe3 CHHAICH MEPeIaroThCsl B 00MIBA HAMIPSIMHU, IO
HEMOXJIMBO (Di3UUHO.

b) Pisni/saxicTe/hopmu/tunu CBigoMocTi: nepBuHHA cBigoMicTh (70%), BTopunHa (10%) Ta
tpetunHa (1%). Hacenenns nepxkaBu posnozinene sik: 7:2:1. Tperunne marots ['enii/Cesri. Lle
Ol0/10r14HA CBIIOMICTB!

¢) Dyukiis noseainku (OIT) JITTP:

Y (t) = P(t) = <Moau Mo3Ky/pyHKIIOHATBHI 3MiHHI TOPSAAKY, 3MiHHI 3C>.

«Monu M0o3Ky/(pyHKITIOHAIBHI 3MiHHI OPSAKY» - 1ie 3MiHHI: k(t), e(t), 1(t), 6(t), €(t) Ta iHmi,
a «3miHHi 3C» - 11e KOHTPOJIBOBaHI TOOTO, 110 33/1AI0THCSI KOHCTPYKTOPOM CHCTEM, ajie B OCHOBHOMY,
3MiHHI BHYTPIIIHBOTO Ta 30BHIMIHBOTrO cepenosuma (3C) — 1e HEKOHTPOJIbOBaHI/ HEBU3HAUECHI/
croxacTu4Hi/ HerepenbauyBani o0ypenns: {(t), &(t).

[Tpy 11bOMY BaXKJIMBO PO3IJIA Ta OO0JIIK, 30KpeMa, y MOJIENI CHOCTePEeKEHb/BUMIPIOBAHb SIK
MyJIbTUILTIKATHBHE-aAuTUBHA cyMil rpoiieciB (MAC), nanpukiaz, y(t) = h[X(t), {(t), &(t), t] abo,
HaNpUKIal,

y(®) = H(G(®), hX(0)+ E(D).
Lle six aHanor, HampuKIaa, BUPOOHNYOI QPYHKIIT YK PIBHSAHHS CIIOCTEPEKEHB/BUMIPIOBaHb
CTaH CKJIa{HOi CHCTEMH.
BusnaueHHs KaHaTy BUMIPIOBaHb SIK IHTEIPAIbHUI OnlepaTop:

y(®) = [ K& DX@dr +¢(),

a0o 1HTerpasbHEe BU3HAUCHHS KaHaTy BUMIPIOBAHb:

y@=fK@ﬂMﬂmmm+aﬂ
to

Mooenv ounamixu Kamamry cnocmepextceHv/8UMIprO8AHb—PIGHAHHI CNOCIEPeXHCeHb / BUMIDIE
nosedinku OIIP (CY):

y(t, ty) = ftto" W, DL X(@]dr + @), k=12, ..,

TyT 3anpoBa/keHO MO3HaueHHs, TOOTO. BU3HaUE€HHS HOBOTO BEKTOPY:

BOX®)] = GOX1 1), -, GOXn(®O)T, 1e (1) = (D), .., G (D).

BuHukae BijoMe 3BOpOTHE 3aBJaHHS: OLiHIOBaHHS ((inbTpawii) Ta ineHTHdikamii, ToOTO.
Bu3HaueHHs ominku X (t;,) BekTopa X (t,) Ha OCHOBI TOETAITHOI OOPOOKM HAGOPY CIOCTEPEkEHb
{y(t, ty)|telto, til, telty, tesrl, .} AAS  amanTUBHOrO yMOpaBIiHHSA, TOOTO C€AMOTO BEKTOPY
ympasmiaHs Uk = L[X(t,)], k = 1,2, ..., e k - Homep nepiony amanrauii, k = 1,2, ...; [to, tx], [te
tes1], --- - IHTEpBAIM Yacy aganTUBHOTO ympaBimiHas; ne W (t, T) - iMITyIbCHO-TIEpEXiTHa MATPHILST
(aapo interpansHoro oneparopa); X(t) = (X1 (t),...,Xp(t)) — croxacTuuHmii BekTOp (CTOBIEND)
crany CVY; {(t), &(t) — BIANOBIAHO, CTOXaCTUYHI MPOLIECH BHYTPILIHIX Ta 30BHIMIHIX 00ypeHb Ha
noBeninky OIIP, To6To y Bursimi momeni «MACy» s agantuBHoro oriHroBanHs [7-10]. X(t) =
[k(t), e(t), r(t), O(t), €(t)] — BekTOp muuamiku crany noeaiaku CY (inrenekryansHoi CIIP), mpuaomy
k(t), e(t), r(t), 6(t), €(t) — KOTHITUBHI, eMOIIi}iHi, pe(pIIeKCHUBHI, TyXOBHI Ta €THYHI 3MiHHI («1apamMeTpu
nopsaky»). Bekrop X(t, q) = {Xi(t, q), i=1,..,n} — ne Halip HPOCTOPOBI 3MiHHI CTaHy
inTenexTyanbHoi CIIP abo Cy6'ekta ynpaBiiHHs, TOOTO, BEKTOP CTaHy MO3KY.
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5. Mooenweannsa adanmuenoi ounamiku nogedinku CY ma IIP (OIIP)

Jns t€ [to, T], ToOTO AN BChOTO iHTEpBaTy 4acy (PyHKIIOHYBaHHS i PO3BUTKY CHUCTEMH,
Po3n00iNeHy CTOXaCTUYHY MOJETb MOXHA IPEICTABUTH K CHCTEMY TU(EpPEHIIaIbHUX PiBHSIHB!

0X;/0t = A[E(1iX; — Xjwi bijXiXj — aiXi®) + D (6, ) AX;) + ¢; + w;,

ne X; - KOOpJJMHATH CTOXaCTHYHOTO BEKTOPY CTaHy cuctemu, npuiaomy X; =X;(t, q1, 92, q3);
1,j=1,2, ..., n; 1; - KoOeDiIEHT penpoayKIlii (PO3MHOXKEHHSI, 3pOCTAaHHS, PO3BUTKY 1 TOMY MMOII0HE);
a; - napameTp HaCHYEHHs, OOMEKYI0Ue 3pOCTaHHs (PENPOIYKILI); b;; - mapaMeTp B3a€MOJIT MK
nigcucremamu; D;(x,y,z) - koediuieHT qudysii i - it migcucremu (cy0'ekra, areHTa) B TOULI q =
(91,92,93); & =¢&i(t,q) 1 ¢; =¢;i(t,q) - croXacTU4HI MYJIBTHILIIKATABHI 1 aJMTHBHI CKJIAJ0BI
Mojeni, BIAMOBIAHO; U; =u;(t,q) - KOOpPAMHATH BEKTOpY YmpaBiiHHSA Uu(t), TOOTO BEKTOP
YHpaBIiHCBKUX pilleHb; A; - Macmrabyroun koedimient A - namcacian, to6to A(*) = 92%(*
)/0q? + 0%(x)/dq% + 0%(x)/0q5 a t € [0, T] - inrepsan yacy (QyHKIiOHYBAaHHS i PO3BUTKY
CUCTEMH.

3a3BuYail BUKOPUCTOBYBaHI Heninitini ¢hynxyii nosedinku (HOIT) OIIP maroTh craTUIHHN
Xapakrtep, ToOTO. BOHU HE BIJNOBIIAalOTh peaibHiil JuHaMill (yHKIIOHYBaHHS MO3KY, OCOOJIMBO B
KpuTHYHEX Ta ckinagaux curyanisax (KCC) ta ymoBax. Tomy akryansHuMHE € nociimkenas HOIL, B
SKOMY BPaXxOBYIOTbCS SIK IMHAMIKY, TaK 1 CTOXacTU4HICTh BIuuBY 3C, HanpuKiIaa, y BUrJsii [7]:

y(t) = [; K(tDx(@)dT + () abo y(t) = [, K(t, 1)4(®) x(1)d + £(D),

ne K(t,r) — iMmmynbCcHO-TIepexifiHa MaTpuisl (SIpo 1HTerpajibHOro omeparopa); x(t) =
(x1(t), ..., x,(t))—BexTop (cTOBIEIH) pecypciB («BXim» cuctemn); &(t) i {(t) - croxacTU4HI poLecH
BIUJIMBIB, 110 OOYPIOIOTH (€K30T€HHI Ta eHA0reHH1) Ha moBeainky OIIP.

[ToBeninka sk (yHKIS/3MIHHA 3aJIeKUTH BiJ 0aratbox (akTOpiB/3MIHHUX CBIIOMOCTI Ta
MiICBIIOMOCTI: KOTHITHBHI, €MOILiiiHi, pe(eKCUBHI, €TUKH, HOPM Mopaii/Mopani (COBICTI) —
peniriiHuX 3aroBifieil, HOpM IpaBa, piBHs KyJbTYPH Ta OCBITH Ta 1H. 3ayBa)KUMO, 110 AESKI 3 HUX
HMIBUIKO, @ 1HII — MOBIJIBHO 3MIHIOFOTHCS.

[Tpyuomy onHI MarOTh AUHAMIKy (HENiHIMHY), a 1HIII — MpocTo Jeski (yHKii yacy B
oOMexxeHHsX. COBICTH 1 MoOpalibHI IIIHHOCTI BXOAATH [0 €THYHOI CKJIaJoBOI, TOOTO. Tpebda
MOJICNIIOBATH €TUYHI 3MiHHI, TOOTO. IIpollecH €TUKU. BoHU BapiaOenbHi.

[Tonsarrs ernynuit IIII. 3a kKOpOHOM HeMae HaIIMX 3a3HAUYEHUX MOHATh, MOPAIBHUX
IIHHOCTEN Ta 1HII MyXOoBHI (akTopu. HaBiTh 71 MeKUX 3 HUX HEMAae TMepeksiaay, 3 YUM 1HOI
CTpaXKJaro0 B MyOiKaIlisx.

Ax mo3zox npuiimae piwenns. barato ¢hakTopis, 10 BIUIMBAIOTh HA IPUNHATTS pillieHb (TE€HU,
COLIlyM Ta iHIII), cepell HUX MO30K — KIIFOUOBUI MeXaHi3M, SKUH TMOsCHIOE Hamil pimeHHs. Tak
BUHUKJIa HOBA TaJTy3b - HEHPOEKOHOMIKA, sIKa HAMAraeThCsl CTBOPUTH MPUHIIMIIOBO HOBY TEOPIIO, KA
HOSICHUTD Hallll pillIeHHs TeHaMH, aKTUBHICTIO HEHPOHIB, CHPUHHATTSAM HaIIMM MO3KOM iH(popMallii,
BIUTMBOM COI[IaJTbHOTO CEPEIOBUINA Ta EBOIIOIIETO.

Hi st koro He cekper, 110 JOCHTIKeHHSI MO3KY — CKJIaHUH IpoIec: MO30K CKJIaa€eThes 3
MITBSAP/IB HEUPOHIB, SKI 00'€HAHI MECATKAMU THUCAY 3B'SI3KIB, 1 3PO3YMITH, SIK TPAIIOE IS
KOHCTPYKIIis HEMPOCTO, MPOTE HEHpoOioorisa AIfIIIa JOCUTh CEPHO3HOTO MPOrpecy Y BUPIIICHH]
I[LOTO TTUTAHHSI.

Hocnimxennss benmxamina JliGeta cwibHO BIUIMHYJIO Ha HeWpoOionoriB 1 ¢imocodis:
JTOCTIAHUK OTPUMaB MOKJIMBICTH XPOHOMETPYBAaTH CBiAOMICTh pimieHb. JlibeT 3apeecTpyBaB
eHnedanorpamy, 1mo0 MOAWBUTHUCS, IO BiJOYBA€TbCS B MO3KY JIIOJAWHU B MOMEHT HpPUHHATTA
pIIIEHHS, 1 BUSBUB, 1110 YCBIJIOMJIEHHS PIILIEHHS HAJIC)KUTh CaMOMY Jii, 1110 LIJIKOM JIOT14HO, IPOTe
JIOCJTITHUK 3BEpHYB YBary Ha Te, 1[I0 CUTHaJ MO3KY 1CTOTHO mependayae yCBIJOMJICHHS pillleHHS, 1
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MOXKHa Tepen0ayuTH pillleHHs JIIOJUHY 3a70BrOo 10 MOMEHTa, KOJIM BOHa ii ycBimomuoe. 3a
JIOTIOMOT'OF0 TIPHJIATy 3a MIBCEKYH/IH /10 YCBIAOMIICHHS PIIIICHHS BOHO BXXE CTABAJIO BIIOMUM.

Lle BIAKPUTTS OPOIUIIO BEIMYE3HY JUCKYCI0 Y O0araTbox (paxiBLiB pi3HUX CIIPSIMOBAaHOCTEH,
0co0MBO y ¢imocodis, sAKI 3aMUTAIN PO T€, HACKUILKKH OOTPYHTOBAHO JYMKY IO TE, IO caMe
JroauHa npuiiMae pimenHs. [loBropue nociimkenns 3 Bukopuctanassm MPT nokasaino, 1o 3a Bicim
CEKYH]I JIO TOTO, SIK PIIICHHS CTAa€ YCBITOMJICHUM, HOTO MO>KHA TIepeI0aunTH.

Y HelpoeKOHOMILlI TPUHHSATTS PillIeHb BUIIIAIA€ TaK: BHHUKAE IPOOIEMa, CITiTy€e MOPIBHIAHHS
aJbTEPHATHB, BiJOYBAa€ThCsl BUOIp MK ajlbTEpPHATHBAMHU Ta OIIHIOETHCS PE3YJBTaT 3 METOIO
OTPUMAaHHS JOCBITY.

binbmiicTh 10CIiKEHb Y HEUPOEKOHOMIITI (DOKYCYIOThCS Ha €Talll MOPIBHSHHS aJbTEPHATHB.

BBakaerbces, 110, SKIIO BiJjoMa IepeBara, Mo>kHa nepeadadnT pimeHHs. Tomy OuIbIIicTh
JIOCJTIJDKEHb CKOHIIGHTPOBaHA HAa BUABJICHHI, YOMY HaM MOA00A€THCS OJTHA OMIIisl OlIbIIe, HIK 1HIIA.
Jlist BUpIIIEHHS [BOTO IMHUTAaHHS MOXHA CKOPUCTATHCS EKOHOMIYHOI TEOPIEI0 - MPABHIOM
MaKCHMi3aIlii KOPUCHOCTI, 3T1IHO 3 SIKMM, BAOMPAIOYH MK IBOMA BapiaHTaMH, MM BUOMPAEMO TOM,
KU HaM OibIe mo100aeThest a00, 3riIHO 3 EKOHOMIYHOKO TEOPIEr0, Mae HAWOLIBITY KOPUCHICTD
(mpuBabIUBICTH OIIIIIT).

OpHak Mo Mae BENWKY MiHHICTB? J[Is KIIAaCHYHOI HAyKW BH3HAYWTHU IIHHICTH Maiike
HEMOKJIMBO — €KOHOMII[I a0CONIOTHY I[IHHICTh HIKOJIU HE BU3HAYAIOTh.

Jlocmi THUKY MO3KY Ka)KyTb, III0 TPOOJIeMy MOYKHA BUPIIIUTHU. 3 TOUKU 30pY HEHPOESKOHOMIKH,
CyO'€KTHBHI I[IHHOCTI — II€ CEpeIHE 3HAYEHHS aKTHUBHOCTI HEMPOHIB y CIEiani30BaHUX Taily3six
MO3KY, III0 KOJIyIOTh HAIlll yIIOA00aHHS.

Iepapxiuna cynepBi3opHa Cy0'€eKTHO- Ta 00'€KTHO-OpI€EHTOBAaHA aJalTHBHA 1HTENEKTyallbHa
cuctema yrpasimiaas Ta [IP 0CHOBI iHTErpalbHOT CTOXaCTHYHOT MOJIET1 HENTIHIMHOT TUHAMIKH MOYKHA
ySIBUTH Y BUTIIAL (puc. 3).

3a niocymkamu inmeepanbHOi CMOXACMU4HOI MOOeNi HeNiHIUHOI OUHAMIKU.

u(t)
k(t)
v | Cy6lext yopapmimmaTa P [ (o
(CY ma IIP). 1(t)
5(t)
X(t, q)
(t) J
v B/C l [HTEP®EIIC u(t) M v v

InTeIeKTYAIBHA CHCTEMA, CHCTEMAa 00pPOOKH,
MOJeJIIOBAHHS, YIIPABJIHHSA TAa IPHAHATTS pillieHb

1 G |

Pucynok 3. lepapxis ynpasninas ta [1P: CYIIEPBI3OP — OIIP OV.

BHCHOBKH: Bnepuie po3risHYTO y3arajJbHeHa 3-X pIBHEBAa CTPYKTypa i€papXidyHoi
IHTErpaibHOI IHTEIEKTYaJIbHOI CUCTEMHU YMPABIiHHSA 1 MPUIHATTS pIllIEHb y CKJIAJHUX CHCTEMaX,
3alpoONOHOBAHO IHTENEKTyallbHa (CyNepBi3OpHA) cHcTeMa, cucTeMa OOpOOKH, MOIETIOBAHHS,
YIOPpaBIiHHSA Ta IPUIUHATTS PillIeHb, 3 YpaxXyBaHHIM MOKIMBOCTI MOJICJIFOBaHHSI BCIX PIBHIB CUCTEMH,
MOJIeNIl CKJIQJAHOTO KaHally BUMIPIOBaHb Ta CIIOCTEPEKEHb y BUIJISAI MYJIbTUIUIIKATUBHO —
aUTUBHOI CyMIiIlll BUMAIKOBUX TPOIIECIB Ta (DaKTOPIB, 3 ypaxyBaHHSAM BEKTOpa 3 HAOOPy: Mojemi
CKJIaJHOTO KaHaJly BHUMIPIOBaHb Ta CIIOCTEPEXKEHb y BUIVIAII MYJBTHUIUIIKATUBHO — aJUTHUBHOI
CyMIIlll BHUMAJKOBUX TMPOIECIiB Ta (DAKTOpIB, 3 ypaxyBaHHAM BEKTOpa 3 HAOOPY: KocHIMueHi,
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eMoyitini, pechiekcugHi, Oyxo6ui ma emuuHi 3MiHHI («TIapaMeTpu TOPSAKY»), a TaKOXK MOJIENl
JWHAMIKHU TIPEJICTABIICHI 1 B PO3MOIIJICHUX KOOPANMHATAX.
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Cawcap B.1. (lJenmpanvruii Hayko6o-0ociionutl incmumym 030poeHusa ma siticbkoeoi mexuiku 3C
Ykpainu)

HENPOMEPEKHUI AHAJII3 CTPYKTYPUA XMAP HA BOPTY ABIAIIIITHAX
IJIAT®OPM JIUISI TPOTHO3YBAHHS METEOJAHUX Y IPU3EMHOMY
CEPEJJOBMILI

Anomayia: J[{onogiov npucesuena po3podyi cucmemu HeUpOMepedrtcHo20 aHANI3y CMPYKMypu xmap Ons
BU3HAYEHHS MEMEeOPONOIUHUX OAHUX N0 XMAPAMU HA OCHOSI 300paAdICeHb, OMPUMAHUX i3 ODOpmMa asiayiiHux niam@popm.
Axmyanvuicms memu nojasieae y nompeoi nioguyeHHs MoYHOCMI NPOSHO3I8 N0200U ) PeLiOHAX i3 0OMENCEHOI HA3EMHOIO
ingppacmpykmyporo. 3anpononoganuii nioxio nepedbavac iHmezpayiro Memoois Komn 10mepHo2o 30py ma HelupoHHUX
Mepedc Ol GUIYYEHHA XAPAKMEPUCMUK XMap I GUHAYEHHS MemeopoNo2ivHUX napamempis (ammoc@epHuti muck,
WeUOKicmb | HANPAMOK Gimpy, mun ma IHMeHCUSHICMb 0nadis). Apximexmypa cucmemu cKIAOAEMbCA 3 MOOYIs
BULYHUEHHST O3HAK I3 BUKOPUCMAHHAM 320pmKosux Hetiponnux mepedc (CNN) i peepeciiinozo 610Ky 015t RpocHO3Y6aAHHS
napamempis. Haguannsa mooeni 6azyemsbcs Ha oamacemi, w0 6KIOYAE 300PANCEHHA XMAP PIZHUX MUNIE, OMPUMAHI 3
bopmosux kamep asiayitiHux niam@opm, i 8iOnosioHi Memeooani, 3iopani 3 HazemHuux cmanyit. Haconowyemocs na
sadicusocmi 3abe3neuents penpe3eHmamusHoCcmi 0aHux, 8paxyeanti ce30HHUX 3Mmin i eeoepadiunux ocobaueocmel.
IIpakmuune 3nauenHs pobomu noA2A€ 6 MOICTUBOCII GUKOPUCIAHHS cUCeEMU 05l ONEPAMUBHO20 AHATIZY NO20OHUX
VMO8 y pedicumi peanvrHozo uacy. Lle éxniouae npocnozyeanHs no2o0u 015 asiayii, OYiHKY KIIMAMUYHUX YMOE Ol
eHepeemuKy ma CilbCbko2o 2ocnodapcmea. Taxoodic po3enadaromves NepCneKmusu 3acmoCy8aHHs GeNUKUX MOGHUX
Modenell ma MYIbIMUAZEHMHUX CUCTNEM | Y3a2aibHeHHsA NioXo0y OaA iHwux cep, maxux AK MOHIMOpuHe
iHGhpacmpykmypu uu RPUPOOHUX KAmacmpog.

Knrwuosi cnosa: Hevipomepedchuil awaunis, CMpYKmypa Xmap, Memeopono2iuHi Oaui, Komn tomepHuu 3ip,
320pMKO8I HeUPOHHI Mepedici, NPOZHO3Y8AHHS NO200U, asiayilini niamgopmu,

Abstract: The paper is dedicated to the development of a neural network-based system for analyzing cloud
structures to determine meteorological data beneath the clouds based on images captured from aviation platforms. The
relevance of the topic lies in the need to improve weather forecast accuracy in regions with limited ground infrastructure.
The proposed approach involves integrating computer vision methods and neural networks to extract cloud
characteristics and determine meteorological parameters (atmospheric pressure, wind speed and direction, type, and
intensity of precipitation). The system architecture consists of a feature extraction module utilizing convolutional neural
networks (CNNs) and a regression block for parameter prediction. The model training is based on a dataset that includes
images of various cloud types captured by onboard cameras of aviation platforms and corresponding meteorological
data collected from ground stations. Emphasis is placed on ensuring the representativeness of the data, accounting for
seasonal changes, and considering geographical features. The practical significance of the work lies in the possibility of
using the system for real-time weather condition analysis. This includes weather forecasting for aviation, assessing
climatic conditions for energy and agriculture. The prospects for applying large language models and multi-agent systems
are also considered, as well as generalizing the approach to other areas such as infrastructure monitoring or natural
disaster management.

Keywords: neural network analysis, cloud structure, meteorological data, computer vision, convolutional neural
networks, weather forecasting, aviation platforms.

CyuacHi 3ajaui METeopoJIorii Ta KJIiMaToIOrii BUMaraloTh BUCOKOI TOYHOCTI MPOTHO3IB y
peasibHOMY 4Yaci, 0COOJMBO B YMOBAax PETiOHIB 13 OOMEXKEHOI0 HAa3eMHOI0 1H(PPaCTPyKTypOrO IS
300py aanux. TpaauuiitHi METOaM aHasi3y MOTOJHUX YMOB, sIKI 0a3ylOThCS Ha JAHUX 13 HA3eMHHUX
CTaHIlIi, CYMyTHUKIB ab0 pagapiB, 4YacTo HE 3a0e3MeuyroTh OCTaTHHOI JeTamizaili Ta
orepaTtuBHOCTI. BogHowac, po3BUTOK aBiallifHUX M1aTdopM, TaKUX K OE3MUIOTHI JIITaJIbHI arapaTtu
(BIIUTA) Ta miTaku, a TakoXX HOBITPSHUX 30H[IB, BIAKPUBAE HOBI MOXIHMBOCTI Uisl 300py
BUCOKOTOYHHMX JIaHUX MPO XMAapHICTh O€3MOCepeHbO 3 BHUCOTU MOJBOTY. XMapH € BaXKIMBUM
€JIEMEHTOM aTMoc(epd, MmO TPSMO BIUIMBAE Ha TaKi METEOPOJIOTIYHI TapamMeTpH, SK ONaju,
atMocepHHUil TUCK, HIBUIKICTh i HANPAMOK BITPY. IX cTpykTypa, ¢opma Ta AHUHAMIKa MOXYTh
BUCTYNATH 1HAWKAaTOpaMH TOTOAHHMX 3MiH. OIHAK aHalli3 XMap y pealbHOMY daci JUIsl OILIHKH
NPU3EMHUX METEOJIaHUX 3AJIMIIAETHCS CKIAJHUM 3aBJaHHSIM 4Yepe3 BapiaTMBHICTh XMapHOCTI,
CE30HH1 3MIHU Ta BIUIUB JIOKAJIbHUX (PAKTOPIB.

Merta pobOTH mosiArae y CTBOPEHHI KOHLEMIIT CUCTEMH, SKa 3[JaTHa Ha OCHOBI 300pakeHb
XMap, OTpUMaHUX 13 60pTa aBialifHUX MIaT(GOPM, BU3HAYATH KIFOYOBI METEOPOJIOTIUHI MapaMeTpu
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B IPHU3EMHOMY cepeloBuIlli. Takuii MiaXi BUMAarae iHTerpaiii METOMIiB KOMII IOTEPHOTO 30pY,
rIMOOKOr0 HaBYaHHS Ta MPOTHO3YBAHHS YACOBUX PSJIIB.

JlocimipKeHHsT XMapHOCTI Ta 11 BIUIMBY Ha aTMOC(EpHI MPOIECH € OJHIEI0 3 KIIFOUOBHX 33124
KJIIMATOJIOT1i Ta MeTeopoJorii. BUBUEHHS CTPYKTYpH XMap J103BOJISIE HE JIUIIIE TOKPAIIUTH IPOTHO3U
MIOTO/TM, a U CIpHsiE€ PO3yMIHHIO TTI00AIbHUX KIIMAaTHYHUX 3MiH. BUKOpHCTaHHS Heiipomepex s
aHaJI3y CTPYKTYPH XMap 3 METOI BU3HAYCHHS MapaMeTpiB MPU3EMHUX IIapiB aTMOCHEPH € HOBUM
HiAX0I0M, 110 00’€IHY€E TOCTIKEHHS aTMOC(epH Ta IUNTYYHOTO IHTEJEKTY, CIIPHSIOYU PO3BHTKY
MDKIUCHUIUTIHAPDHUX ~ HampsMiB. [IpakTu4He 3HAYEHHS MPOIMOHOBAHOTO TIAXOAy BKIIIOYAE
OTEepaTUBHUI aHaNi3 MOrOAHMX YMOB JUIS IUIAHYBaHHS IOJILOTIB aBiallii, OI[IHKY PEriOHaJIbHOTO
KJIIMAaTy Ta MPOTHO3YBaHHS OMAJIB I €KOJIOTil Ta CUIbCHKOTO TOCIOIapCTBA, INIAHYBaHHS POOOTH
BIJTHOBJIIOBAaHHX JDKEPEJ €Heprii B eHepreTulli, a TAKOXK MPOTHO3YBAaHHS €KCTPEMAIbHUX TOT'OTHIX
SBUII NI 3amoOiraHHs KartacTpodaM Ta opraHizaimii eBakyarii HaceineHHs. Po3poOka cucremu
HEHPOMEPEIKHOT0 aHaIIi3y XMAapHHUX MOKPOBIB 13 BUKOPUCTAHHIM aBiallilHUX MIaT(opM JO3BOJIHUTH
3HAYHO PO3IIMPHUTH TOCTYI JO ONEPaTHUBHUX 1 TOYHUX METEOPOJIOTIYHUX JaHUX, 3a0e3Meuyruu
SKICHO HOBHUH piBEHb Yy BUPIIICHH] 33/1a4 IPOTHO3YBaHHS Ta MOHITOPUHTY ITOTO/IH.

AHani3 ocTaHHIX MyOiKallii CBITYUTH PO 3POCTAIOYHI IHTEpeC A0 BUKOPUCTAHHS IITYIHUX
HEHPOHHUX MEpEeX JUIsl aHalli3y XMapHOCTI Ta MPOTHO3YBAaHHS METEOPOJIOTIYHHX MapaMeTpiB.
3okpema, gocmimkenns [1] nemMoHcTpye eQeKTUBHICTh peKypeHTHUX HelpoHHuX Mepexk (RNN) ta
ix KoMOiHaIiil y TPOTHO3YBaHHI TeMIepaTypH HaBKOJHUIIHBOTO CEPEIOBHIIA, JOCITAIOYH TTOXHOKH
14.22%. lle miakpecmioe MOTEHIiall HEUPOHHUX MEPEK MPU BUPILIEHHI METEOPOJIOTIYHUX 3ajad.
[ami pobotu [2 - 10] mpucssiueHi po3poOili HEHPOMEPEKHUX MOJENeH Ui aBTOMAaTHYHOI
kiacudikaiii XMapHUX CTPYKTYp Ha 300pa’KEHHSX MEPEBAKHO 3 HA3EMHUX KaMep CIIOCTEPEKEHHS.
[e BaxJIMBO 11 PO3yMiHHS aTMOC(EpPHUX MPOIECIB Ta MOKPAIICHHS MPOTHO31B oroau. J{is mporo
TaKOX BUKOPHCTOBYIOTHCS 300paskeHHs xMmap 3 cynmyTHukiB [11, 12]. V crarti [13] po3risimaeTses
3acrocyBanHs LI s aHamizy BETHMKUX OOCATIB METEOPOJIOTIYHUX JAHUX, IO JO3BOJISE MIBUAKO
BUSBIIATH 3aKOHOMIPHOCTI Ta MiJABHUILYBAaTH TOYHICTH MporHo3iB. L{i Ta iHIII poOOTH 3aKianarTh
OCHOBY JIJISl TIOJANBIIUX JOCTIIKEHb Y cepl BUKOPHCTAaHHS HEHPOHHHX MEPeX Ui aHalli3y Ta
MPOTHO3YBAaHHS METEOPOJIOTIUHUX MapaMeTpiB, MIAKPECIIOI0YN Ba)JIMBICTh IHTErpaiii METOIiB
IMOOKOr0 HaBYaHHS Y METEOPOJIOTIYHY MPAKTHKY.

Ines BU3HAUEHHS MOTOJHUX YMOB Ha 3€MJIi, i1 XMapaMmH, 3a I0IIOMOT0I0 aHaJIi3y 300pakeHb
XMapHOTO MOKpPOBY, 3pOOJIEHMX 13 JIiTaka, BUIJISAAE€ JIOCUTh MEPCHEKTUBHOIO, OCOOJIMBO 3
ypaxyBaHHSIM Cy4YacHHX MOXJIMBOCTEH KOMIT FOTEPHOTO 30py Ta HeHpoHHHMX Mmepex [14 - 16].
30BHILIHINA BUIISAA CYLUIBHOTO XMapHOIO IIapy, MPUKIAAM SKOrO HaBeAEHO Ha puc. 1, 2, Moxke
Ha/IaTH KOPUCHY 1H(OopMaIlito o MOroIH1 yMOBH, OCKUIBKU (OpMa, CTPYKTYpa, BUCOTA Ta TUII XMap
NOB’sI3aH1 3 MpolecaMu B atMocgepi, BKIOYaoUl onaau, TUCK 1 Bitep. Lle Moxke 6yTtu ocobinBo
KOPHCHHUM Yy palioHax, /ie HeMae MeTeocTaHIii (puc. 1).

C— e ——

Pucynoxk 1. Ilpuknag miaibHOro XMapHOTo MOKPOBY HajJ ATIAaHTUYHUM OKeaHoM ((oTo aBTopa).

Jlia peamizamii Takoi i71ei HEOOXIJHO BpaxyBaTHU Kulbka BaxiuBuX eramiB. [lo-mepiue,
noTpiOHO 310paTH BEIHKY Ta sIKICHY 0a3y penpe3eHTaTUBHUX JaHUX. Lle MatoTh OyTH 300paxKeHHs
XMap, 3po0JieHl 3 Pi3HOI BUCOTH, MiJ PI3HUMH paKypcaMu 1 B pI3HOMaHITHUX MOTOJTHUX YMOBaX, a
TaKOX BIJMOBIIHI METEOPOJIOTIUHI JaHi i3 3eMii. BkazaHi gaHi MarOTh OXOIUTIOBATH YCI MOXKITUBI
TUIIM XMapHOCTI, IOPH POKY, reorpadivyHi 30HU Ta eKCTpeMallbH1 IOro iH1 sBuIa. J[07aTkoBO, MOKHA
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IHTerpyBaTH 3a3HAa4yeHl JaHi 3 IHIIUMHU JDKEpelaMH, TaKHMMH SK CYIMYTHHUKOBI 300pa)keHHS,
MOKa3HUKH aTMOC(EpHOro THCKY Ha PI3HMX BHCOTax, METeopajapHi Ta JimapHi maHi tomro. Lle
JIO3BOJIMTH MOJIEINI BPaXOBYBATH HE JIUIIE BUIJIS XMap, ajie i 1HII BaXJIUBI (PaKTOpH, K BIUTUBAIOTH
Ha ToroAy. TakoX JOIIIEHO 3alpOBAaIUTH MEXaHI3MH 3BOPOTHOTO 3B’SI3KY, KOJH JIaHi IPOTHO3Y,
OTPUMaHI MOJEIUIIO, 3ICTABISAIOTHCS 3 PEAJbHUMHU CIIOCTEPEKEHHIMHM, 100 MOKPAIIUTH TOYHICTh
MPOrHO3IB 1 aJanTHUBHICTb cHCTeMU. Hampukman, NEepCcrneKTUBHUM HAmpsMOM Moxe OyTu
BUKOPHUCTAHHS MOAIOHOT CHCTEMH B peabHOMY uaci aus asianii. Jlitak un BITJIA mae ocHamryBatucs
CEeHCOpaMH Ta KaMepamH, SIKi B peaibHOMY 4Yaci NepenaBaTUMYTh JaHl B OOYMCITIOBAIBHUNA LEHTP,
HaINpHKIAJ, 32 JONOMOIOK CTUIBHHKOBOIO 3B’s3Ky, ¢ BiH € [17], abo cucremu Starlink. Taxox
MOJYUIMBUH TPHOM Ha OOpTy Yy BKa3aHi CHOCOOM HA3eMHHX METEOJAaHUX JJISl IMPOBEIACHHS
OTIEPATUBHOTO aHAJI3Y 13 MPOrHO3YBAaHHSM MOTOJHUX YMOB i JiTakoM. Lle 703BOIUTE MiABUIIUTH
0e3IeKy MOJIbOTIB, IPOrHO3YBATH JIOKAII3ALII0 30H TYpOYJIEHTHOCTI.

Pucynok 2. ITyxki xmapu ((poTo aBTOpa).

[To-gpyre, BakJIMBO CTBOPUTH MOJIENIb HEUPOHHOI Mepexki, sfka Morja © e(eKTHBHO
aHarizyBaTtu 3i0paHi maHi. /[ 1pOrO MOLIIBPHO BUKOPHCTOBYBATH 3TOPTKOBI HEHMPOHHI MeEpexi
(CNN) s o6poOku 300pakeHb, a Takoxk pekypeHTHI mepexi (RNN) abo Tpanchopmepu ams
00pOOKH YaCOBHUX 1 IMOCITIIOBHUX JaHUX.

3BICHO, MPOTHO3yBaHHS MapameTpiB MOTOAM Ha 3eMJl IiJ] XMapaMH MOXKE€ MaTH IE€BHY
MOXUOKY "epe3 CKIIATHICTh aTMoc(hepHUX mporieciB. ToMy Ha epiomy erari JOMITEHO OOMEXKHUTHCS
aHaJIi30M JIMILIE CYIUIBHUX XMAapHUX MTOKPOBIB, 1110 MAa€ CIPOCTUTH BCTAHOBJIEHHS 3aKOHOMIPHOCTEH
eBOJIONiT MeTeoqanux. [ mporo Oe3mocepeTHbOMY MPOTHO3YBAaHHIO aTMOC(HEpHUX MapaMeTpiB
yepes3 aHajli3 IMHaMIKH Bi3yaJbHUX MPOLECIB Mae MepelyBaTu Kiacu@ikallis CTaHy XMapHHX LIapiB.
Bupinrenss 1aHoi 3agaui Moke OyTH 3/iHCHEHE aHaJIOTIYHO 3ampononoBanomy B [18] migxomy 1o
kiacu@ikamii Ce30HHUX YMOB 13 BUKOPHUCTAHHSAM 3TOPTKOBMX HEHPOHHHUX MEpEexX, SKMH MOXKHa
YIOCKOHAIMTH Ta aJanTyBaTH Ui 33/1a4 BU3HAYCHHS CYNUTRHOI XMapHOCTI. [Ipu oMy OCHOBOIO
nporecy ifeHTU¢IKalli CyHUIbHUX XMapHUX CTaHIB € (OpMyBaHHsS JaTacery, IO BKJIOYAE
300pakeHHS PI3HUX TUITIB XMapHOCTI: CYIIUTbHOI, YaCTKOBO1 a00 11 BiZICYTHOCTI. SIK B)ke 3a3Havasocs,
i 300pakeHHS OTPUMYIOTHCS 3 OopTa miTakiB ab0 OE3MUIOTHHX amapaTiB Ha PI3HUX BHUCOTAaX.
BaxxnmBo 3a0e3meunTy pisHOMAHITHICTh JaHUX - 3HIMKHU 3 PI3HUMH PIBHSAMH OCBITJICHHS, y Pi3HI
MOpHY POKY Ta 3 0araTboX PerioHiB, 110 J03BOJIUTH 3pOOUTH MOJIENb OLIbII YHIBEPCATHHOIO.

Jlns knacugikariii THITIB XMapHOCTI MOKHA BUKOPUCTATH anpoOoBany B [18] apxitekrypy Ha
ocHoBi MobileNetV2 [19] (puc. 3), momepemubo HaB4yeHnoi Ha martaceti ImageNet [20], ska
3apeKoMeHIyBasia cBor0 epexTuBHICTh. CyTTEBO, IO 3aBIaHHs Kiacudikallii Moxke OyTH MmoeaHaHe
3 CErMEHTAIll€l0 XMapHOoTro 300pakeHHs Ha ocHOBI Mepexxi U-Net. [lepen anamizom yci 300pakeHHS
MPOXOATh TOMEPEHI0O O0pOOKY, IO OXOIUTIOE 3MIHY pPO3MIpIB, HOPMAJI3aIlil0o KOJBOPIB 1
3a0e3neuye yHidikanito aanux. Ilicns nporo HelpoHHa Mepeka MMOYMHAE aHATI3yBaTH XMapHe
cepenoBuiie. Bona BU3HAauae, 4u MPUCYTHA Ha 300pakKeHH1 CYLUJIbHA XMAapHICTh, 1, SIKIIO Tak,
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Buainsie i mexi. Kpim Toro, B mporieci cerMeHTalii MOXJIMBO YTOYHUTH TUI XMap - HalPUKIIAJ,
MEpPUCTi, KymyacTi YW ImapyBaTi. /[l IOCATHEHHsS HaWKpaluxX pe3yJbTaTiB BHKOHYETHCS
ONTUMI3allisl TileprnapaMeTpiB, TaKUX SK po3Mmip 0aTdy, KpOK HAaBUaHHS Ta KUIbKICTh eIOX.
Hanpukian, 3meHIieHHs po3Mipy Oardy mokaszamo cebe B [18] sk edexTuBHMIT CIOCIO 3HH3UTH
BUMOTH JI0 OOYMCIIOBAIBHUX PECYpCiB, IO MOXe OyTH O0COONMBO BaXKJIMBUM JUIsI YMOB i3
obmexxeHnM oOnaaHaHHAM. Ilicias 1boro Mojenp MpOXOoauTh eranm Bamifamii. Sk 1 y BuIauky
Kiacudikaimii ce30HHHX yMOB [18], BHKOPHCTOBYIOTbCS TpEHYBalbHi, BaJiNalliiiHi Ta TECTOBI
BUOIpkHu. TOYHICTP MOJENI OIIHIOETHCS 3a JONIOMOTIOK METpHuK, Takux sk Balanced Recall, mo
JI03BOJIsIE BU3HAUUTH ii €PeKTUBHICTh. 3aBepIIaIbHUM €TAllOM € peai3alis CUCTEMH y PeaJbHOMY
yaci. HaBpueHa Mozienb iHTETpy€eThCs y OOpTOBE MPOTrpaMHe 3a0e3MeUeHHs aBialitHuX 1aTgopM, 1o
JI03BOJISIE  OTPUMYBATH PpE3yJNbTaTH Kiacudikamii Ta BHKOPHCTOBYBATH IX Ui MOJAJIBIIOTO
nepea0avYeHHs MOrOHUX YMOB.

CyuinbHun
XMapHUI NOKPOB
Knacudikaudis
300paxeHb
11 R 1 e Helipomepexa
&3 :5 N B s . = NPOrHO3y NPU3eMHMNX
“d- - " 1 B & . MeTeogaHuX
Sl B .
= = % o) ©
Pressure: 1010 hPa
Wind Speed: 10 km/h
BiacyTHi abo piaki Wind Direction: SE
XMapu Precipitation: None

Pucynok 3. 3actocyBaHHs monepenHboi Kiacudikaiii XMapHOTO IOKPOBY Ha BXO/Il
HEHpOMEpekKi TPOrHO3YBaHHS TPU3EMHUX METEOJaHUX.

Ji1g Oe3nocepeIHbOr0 BU3HAUEHHSI METEOPOJIOTIYHUX JAHUX 1] CYLIUIBHUMU XMapaMu MOKe
OyTH 3ampoloHOBaHa apXiTeKTypa HEWPOHHOI Mepexi, 10 0a3yeThCs Ha IHTErpamii cydyacHHX
TEXHOJIOT1M KOMIT IOTEPHOTO 30py Ta perpeciiHux mojesneil. BoHa ckimagaeThCst 3 TBOX KITFOYOBHUX
KOMITOHEHTIB: MOJYJIS /Il BUTYYEHHS O3HAK 13 300pakeHb XMap 1 MOAYJIS JAJs NEPETBOPEHHS IIMX
O3HaK Y METEOPOJIOTI4HI TapaMeTpH.

[lepmmii KOMIOHEHT - MOJYyJIb BUJIYYEHHS O3HAK, - BUKOPHUCTOBYE 3TOPTKOBY HEHPOHHY
Mepexy, Hanpukian, MobileNetV3 ado EfficientNetB0, sika ontumizoBana st poO0oTH B yMOBax
oOMexxeHUX pecypciB. Ha BXin cucTeMH MOAAIOTHCS 300pa)KeHHS pPO3MipoM 224x224x3, gxi
MPOXOJSTh Uepe3 Cepiro MapiB 3ropTKH, 00’€qHAaHHA Ta HopMmamizamii. Ha Buxomi dhopmyerbes
BUCOKOPIBHEBUI Ha0lp O3HaK, IO Bi0Opaka€ OCHOBHI XapaKTEPUCTHKH XMapHOTO CEpeOBHUIIA.
Jlist CTUCKaHHS IIHOTO 0araTOBUMIPHOTO TPEACTABICHHS Y KOMITAKTHUN BEKTOP BUKOPHUCTOBYETHCS
JIOJJaTKOBUH 11ap 00'eTHaHHS, a 1151 3a1100iraHHs IepeHaBYaHHIO 3aCTOCOBY€EThCS MeXxaHi3M Dropout.

Jpyruit KOMIOHEHT, perpeciiiHuil OJIO0K, CKJIaIa€ThCs 3 OJTHOTO a00 KUThKOX MOBHO3B'SI3HUX
mapiB i3 ¢pyHkuiero aktuBanii ReLU. Buxin Mozeni npencraBieHui KilbkoMa HeHpoOHaMH, KOKEH 3
SAKUX BIJINOBIJAa€ 3a MPOTHO3 OKPEMOTo MapameTpa: aTMoc(hepHOro THUCKY, LIBHUAKOCTI BITpY,
HanpsMKy BiTpy abo Tumy omafiiB. [[ng KiIbKICHMX NapamMeTpiB BHUKOPHCTOBYETHCS (DyHKIIS
aktuBarlii Linear, Toi sk as kinacudikaminaux - Softmax.

Bxiani nani ans moaeni GpopMyroThes 13 300pakeHb XMap, sKi MOXKYTh OyTH HONEPEIHbO
00poOJIeHI SISl OKpAIEHHsI KOHTPACTY, a TAaKOX JOJaTKOBUX METAJIaHUX, HAPUKIIAJ, T€OJOKaIlii
Yl BHUCOTH MONbOTy. OKpeMmy yBary, 3HOBY X TaKW, CIiJ HPUAUTUTH CE30HHMM BapiallisM.
Hanpuxinas, 3MMOB1 XMapy 4acTo 3/1al0ThCS SICKPABIIIMMU Yepe3 BiIOUTE B CHITY CBITJIO, LIIO MOXKE
BIUIMHYTHU Ha MPOTHO3. 3 ypaxyBaHHAM LIUX 3MiH MOJIENb alalTYEThCS 10 PI3HUX YMOB. BuxinaHi gani
MPEJICTaBIISIIOTh COOOI0 IMPOTHO30BaHI METEOPOJIOTIYHI MapaMeTpu SK y BUIVISJI PETrpeciiHUX
3HaueHb (TUCK, MIBUAKICTH BITPY), TakK 1 kinacudikamiitHux (tum onanais). s miABUIIEHHS CTIHKOCTI
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MOJIelli A0 PI3HOMaHITHUX YMOB 3aCTOCOBYIOTHCSI TEXHIKM ayrMEHTalii, Taki sk oOepTaHHs, 3MiHa
SICKPaBOCTI Ta MEPEBEPHEHHSI 300paKEHb.

HaBuanust mopneni 6a3yeTbcst Ha BUKOpucCTaHHI (yHKIiH BTpar Mean Squared Error mis
perpeciiianx nporHos3iB 1 Categorical Cross-Entropy mns kimacudikamii. ['imepnapamerpu Mozeni
BKJIIOYAIOTh pO3Mip 0ardy, MOYaTKOBUH KPOK HAaBYaHHS Ta onTUMi3aTop. Peamizarmis apxiTekTypu
MO)Ke OyTH BHKOHaHa 3a JOMOMOTOI0 MOMYyJSIpHUX (perMBOpKiB, Takux sk TensorFlow/Keras a6o
PyTorch.

JlJi moaIbIIoro po3BUTKY CHUCTEMH Iepen0adyeHo HTerpaiio MexXaHi3MiB CaMOHaBYaHHS,
IO JIO3BOJIUTH AJANTyBaTH MOJETh IO HOBHMX THUIIB XMAapHOCTI YW METEOPOJIOTIYHUX YMOB.
JlomaTKkoBO MOKIIMBO BIIpOBaauTH MOy b Explainable Al, sikuii 3a06e3ne4uTh MPO30picTh MPOTHO3IB
1 OKPAIINTB X IHTEepIPETOBaHICTh. L5 apXiTeKTypa € THYYKOI0, MaCIITAOOBAaHOIO Ta BiAKPHUBAE HOBI
MO>KJIMBOCTI JUIsl TOYHOTO BU3HAYEHHS] METEOPOJIOTTUHUX JIAHUX 32 300paKEHHSIMU XMap.

VY 3anponoHoBaHii apXiTEKTypi MET€OaHl IPU HABUAHHI MOAAFOTHCS HA BUXIiJA, TOOTO BOHU
BHUCTYIIAIOTh IIJILOBUMH 3HA4YCHHAMU (targets) juisl onmTuMizalii Mojeni, moIi0HO 10 TOro, SIK IIe
poOuThCS B 3a/1auax perpecii ado kimacudikaiii. BoHu He € BXiTHUMU JaHUMH, SIK 1[e MOTJI0 O OyTH
B 3a/1auax, /e MOJENIb BUKOPHCTOBYE JOMOMDKHY iH(opmamiro s aHamizy. Ha BXin mogaroThes
TUTBKH 300paxkeHHss xmap. Lle ocHOBHI NaHi, 3 SKUX MOJeNb Oy/Je BUMTHCS BHIIydaTH O3Hakd. Ha
BUXOJIl MOJIENIb MPOTHO3YE HAOIp METEOPOJIOTIYHMX IMapaMeTpiB, a caMe. perpeciiiHi 3Ha4YeHHs,
HaNpHKIal, TUCK, MIBHIKICTh BITPY; Kiacu@ikaliiHi kateropii (TWm omaiB, THUI XMap, HampsM
BiTpy). Lli mapamerpu MOpiBHIOIOTHCS 3 €TalOHHMMHU 3HaueHHsMH (ground truth) 3a momomororo
BianoBinHUX QyHKIii BTpar (loss functions).

CyTTeBO, 10 Al KOXKHOTO 300pa)K€HHs XMap B HaBYAIbHOMY Ha0Opl JaHUX Mae OyTu
BIZIMOBITHMI HAOIp HITLOBUX METEOPOJIOTIYHHUX TapameTpiB, 310paHUX 13 Ha3eMHUX METEOCTaHIIIH
a00 1HIIUX JKepen (HapUKIIa, CyHyTHI/IKlB) [1ix yac HaBYaHHS Mepexka HaMaraeTbes MlHlMlSYBaTI/I
PI3HUII0 MK NMPOTHO30BAaHMMH 1 peabHUMH 3HAUYEHHSIMH METEOPOJIOTIYHHMX MapaMeTpiB. Taxuii
M1X1]1 T03BOJISIE HABYUTH MOJIEIb TeHEPYBATH KOPEKTHI MPOTHO3U METEOIaHUX BUKITFOYHO Ha OCHOBI
aHaTi3y 300pakeHb XMap, 0€3 JOJaTKOBUX BXOJIIB 200 MOTPEOH B CErMEHTAIIMHIN MaCIIi.

B posrnsanyTiii 3aa4i MeTeo1aHl € KOMIAKTHUMU 3HAYeHHSIMH (HaOOpoM uucen abo KiaciB)
1 HE MalTh MPOCTOPOBOi MPHUB’SA3KU, K Yy CETMEHTALIMHUX 3aaadax. TomMy CTpPyKTypa MOjei
CKOpillle  Harajgye apxiTekTypy Uil  0araTo3HayHOro  NporHo3yBaHHsS  (multi-output
regression/classification), a e U-Net 3 cermenTariii 300paxeHs.

Pazom 3 THM, B TaHOMY BHIIaJIKy BIIMOBIIHY HEHPOMO/JIENIb MOKHA PO3IJIAAATH K PI3HOBH]
mozeni Image-to-Text, ane 3 anmanTamiero mia cnenudiky 3ajgadi MPOTrHO3YBAHHS YHMCIOBUX Ta
KaTeropialbHUX METEOpOJIOriUuHUX JNaHMX. Sk BimoMo, y 3amauax Image-to-Text Mozenb aHamizye
300pakeHHSI Ta TeHEepye TEKCTOBHHA OMUC. Y BHIAAKY, IO PO3IIISAJAETHCS, MOJENb aHaJi3ye
300paXeHHSI XMap 1 reHepye CTPYKTYpOBaHI YMCIOBI (perpeciiiHi) Ta TEeKCTOBI (Kiacudikariiiii)
JIaH1, 0 BIJMOBIAI0Th METEOPOJIOTIYHUM MapameTpaM. Buxin Mojeni € y3araibHeHUM "TeKcToM",
TOOTO ONMHCOM MOTOJJHUX YMOB y BUIVIA/I CTPYKTYPOBAHOTO HaOOpY JaHUX.

Ak 1 B knacuuHii Image-to-Text apxiTekTypi, B OINHUCaHIA MeTeo3agadyl MOXKIMBO
BUKOPUCTOBYBaTH CYKYIHICTb €HKoJaepa Ta Jekojepa. Enkozep (Hampukiaa, MobileNetV3,
EfficientNet) mepeTBoproe 300paxxeHHsI Y KOMIIaKTHE mpezcTaBieHHs (feature vector), a mexozaep
IpALIOe HAJI IIUM TPEACTaBICHHAM Ul TeHepallii BUX1IHUX 3HaueHb. Y JTaHOMY BUIAJKY 1€ MOXKYTh
OyTu okpeMi JiH1iHI a00 KiacudikalliiiHi mapu Jisi KOKHOTO IapameTpa.

Buxinni MeTeofani MOXXyTh OyTH MpeCTaBiIeHl B TEKCTOBIM Gopmi, Harpukiiazd, y Gopmarti
yaml, six mokazana Ha puc. 2. ['eHepallis TaKuX CTPYKTYPOBaHUX MAHHX - 1I€ OJUH 3 MOXKJIMBUX
pe3ynbratiB pobotn mozeni Image-to-Text, ame TyT BUXOAU € YITKO BU3HAYeHWMH. [[ist OimbIm
yHIBEpCATBHOTO MiAX0/1y MOkHa 3a11aTu Image-to-Text moaeni Tummy CLIP a6o BLIP, sixi npaitorots
Ha CTUKY 300pakeHb 1 TekcTy. BoHM MOXyTh OyTH mepeHaBueHi Ha 3ajaui "300pakeHHs Xxmap —
onuc mereoaanux". Hanpuknaa, Mmozaens renepyBaTume TekcToBuil onuc: "CyLiabHI XMapH, ONaau
BiJICYTHI, IBUAKICTb BiTpy 10-15 km/ron, HanpsMok nmiBHIYHO-3axinHui." [lepeBaru Takoro Image-
to-Text migxoay monsAraroTh y TOMY, IO MOJENh CTA€ OUTBII YHIBEPCATBLHOIO 1 MOXKe OyTH JIETKO
a/1alITOBaHA JIJIsl PI3HUX 3aBJIaHb.
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I'enepoBaHmii BUXiJ MOXE€ BHKOPHCTOBYBATHCS HE JIMIIE SK YHCIOBI JaHi, a H K
IHTEpIPETOBAaHUI TEKCTOBUH omuc sl omepatopa abo cuctemu. [l peamizaiiii 3a3HaueHUX
MoJieNiell BUKOPUCTOBYIOTbCA cydyacHi (peiimBopku, Taki sk PyTorch, 3 amanrtoBanumu
KomroHeHTaMu encoder-decoder. MoskInBe MiAKIIOYEHHS BETUKUX MOBHEX Moeneii (LLM) [21] no
KIHIIEBOTO €TaIly Ui TeHepallii OMHCiB Ha MpUpOAHii MoBi. Lle# miaxin poOUTh i/eto e OimbI
MacImTabOBaHO, JO3BOJIAIOYM 1HTErpallif0 B 0araTOMOJaibHI CUCTEMH, J€ 300paKCHHs 1 TEKCT
MPAIIOIOTH SK JOMOBHIOWUI JKepena iHpopMarlii.

30Kkpema parioHaJIbHUM BUOOPOM Il OIMCAHO] 33/1a4l € BUKOPUCTAHHS MYJIbTUMOJAIbHUX
LLM [21], Takux six LLaVa (Large Language and Vision Assistant) abo Pixtral Ta in. I{i mozeni
CTBOpEHI1 JJis OaraToMOAaNbHUX 3a/1a4 1 TO3BOJIAIOTH O€3MocepeHbO MPALIIOBATH 13 300paskeHHSIMH,
TeHEPYIOYH TEKCTOBI a00 CTPYKTYypOBaHI BUXOIM Ha OCHOBI 30poBoi iH(popmarltii. Moaeni LLaVa i
Pixtral iHTerpyroTh aHami3 300pa)keHb Ta TeHepalliio TeKCTy. Lle m03Bosse mpairoBaT 3 JTaHUMH
XMap SK 13 BXiHOIO iH(OpMAIi€l0 1 OTPUMYyBAaTH TOTOBUH TEKCTOBUI a0O YHCIOBHH ONHC
mereonanux. [Ipu npoMy Hemae norpeOu po3poOuATH cHelialbHy perpeciiny Moeib, OCKUIbKU
BKa3aHi MOJIEJI aJlanToOBaHi 0 CKJIAQJHUX BXIAHUX JaHUX Ta IeHepauii CTPyKTypOBaHUX BHXOIIB.
Pixtral Takox MO>ke 1HTETpyBaTH IreHepalito KaTeropiiHux (Onaau, TUII XMap) 1 YUCIOBUX JAHUX Y
TeKCTOBOMY (hopMmaTi. 3 MeTOI0 amanTaiii s KOHKpeTHoi 3amadi LLaVa mae Oyt nepeHaB4YeHa
(fine-tuned) Ha crenudiuHUX TaHUX - 300pakKEHHAX XMap i3 MIPHUB'A3KOK 10 MeTeomaHux. lle
JO3BOJIMTH AJaNTyBaTH MOJENb JO YHIKaJIbHOI 3adayi, sl 4YOoro HEOOXiHO CTBOPHUTH
CIIeliali30oBaHui JaTraceT 3 mapaMmu '"300pakeHHS xMap — MeTreonani". Takuii maracer, sSIK BKe
3a3HavyaNIocs, Ma€ BKIIOYATH 300pakeHHs XMapHUX IapiB (cymyTHHKOBI, 3 BITJIA, 3 miTaka), a Takox
BIJIMOBI/IHI JIaHI TIPO aTMOC(EpPHUHN THCK, BITEp, ONaad, OTPHUMaHI 3 HA3eMHHX METEOCTAHIIN YH
CYITyTHUKOBUX CEHCOpiB. 300paxkeHHs mojaeTbess Ha BXin mogeni (LLaVa abo Pixtral), a momens
Jlalli TeHepye TEKCT 13 OIMCOM MeTeoJaHuX. BUXiaHuil pe3ynbraT Mo)ke OyTH HaJaHUH SIK Y BUTIISAL
TOTOBHX TEKCTOBUX OMUCIB (Hanpukiad, "mBHIKICTH BiTpy 10 M/c, onaam BincyTtHi"), Tak iy ¢popmari
JSON mia nonansioi 06podku. LLaVa nigTpuMye nosicCHEHHS CBOIX IPOTHO31B 1 MOXKE, HAPUKIIA,
ix xomeHTyBaTu: "300pakeHHs MOKa3ye CYLUIbHI IIapyBaTi XMapH, sKi 3a3BHYail MOB's3aHi 3
atmocepuum tuckom 1005-1010 hPa i1 Bitpom y mianmazoni 5-10 km/ron." ToHke HalamTyBaHHS
(fine-tuning) LLaVa 103BoyiuTh TIEpeHABYUTH 11 HA CBOEMY HAOOPi JaHUX, 1100 MOKPAIIUTH TOYHICTh
nporuosiB. [ns Pixtral, BpaxoByrouu 1ii 3HauHi po3mipu, 3amicte fine-tuning moxHa
BUKOPUCTOBYBAaTH TEXHIKHM JIOJaBaHHS CIEIlai30BaHUX IIapiB I perpeciiHux 3agad. B cBoro
yepry, Pixtral Moke BUKOPHCTOBYBaTH CBOE PO3IIMPEHE PO3YMiHHS 30poBOi iHGopMaii 1t OLIbII
TouyHOro aHamizy. Ilicist noHaBuaHHS ciipg nepeBiputd eexTuBHicTh LLM-mozeni Ha HOBHX
300paXeHHSX, OLIHUBIIN ii TOYHICTh, BUKOPUCTOBYIOUM MeTpuKkH MSE i1 perpeciiHux Mporsosis
1 TOuHICTB (accuracy) ams kinacudikamiiaux. [licns 3aBepiieHHs nporecy JOHaBYaHHS MOJIEh MOXKE
OyTH pO3ropHyTa Ha cepBepl UM XMapHiil miaardopMi A aHani3zy 300pakeHb y pealbHOMY 4aci.

Bxazani LLM 1103B0sIsII0TH aBTOMAaTUYHO T€HEPYBATH TEKCTOBI pe3yJIbTaTH PI3HUMH MOBaMH,
HaNpUKiIaJ, YKPaiHCbKOIO YW aHIIIMCBKOIO, 10 3pYYHO AJIS 1HTerpamii B riobajbHI CUCTEMHU. 3
ypaxyBaHHSIM 3a3HaueHoro, LLaVa ta Pixtral € BaxxnuBuMU KaHauAaTaMu JJi9 BUPIMICHHS 3a/a4l
"image-to-meteorology". BOHH [103BONSIIOTE BHKOPHUCTOBYBATH TOTOBI IOTYXHI apXiTEKTypH
OaraToMoJaIbHUX MOJIEJICH, 3BOISIYM 3yCHILJIS 31 CTBOPEHHS CIICIialIi30BAaHOI CUCTEMHU JI0 aamnTarlii
ICHYIOYMX 1HCTPYMEHTIB.

[Tonanpiie miABUIIIEHHS MPOAYKTUBHOCTI, aJallTUBHOCTI 1 MacITaOOBaHOCTI IMTPOTIOHOBAHOTO
HiIXoay 3a0e3MedyeThcsi BUKOPUCTAHHSIM MynbTHareHTHHX cucteM (MAC) [21]. fx Bimomo,
MYJIbTUAT€HTHUN MPUHIMI JTO3BOJISIE PO3MOAUIMTH 3a/1adyl MK PI3HUMH HelpoareHTamH, KOXKEH 3
SKUX CIeI[ialli3yeTbcsl Ha TEBHOMY aclekTi aHamizy. s BupillyBaHOTO 3aBJaHHS TeHepaii
METEO/IaHuX MYJbTHATEHTHA CHCTeMa Oy/e CKIIQJaTUCS 3 KiJIbKOX B3a€MOJIIOYMX areHTiB, SKHX
MO>KHA TIOJIIJTUTH Ha KUTbKA KaTeropii, HampuKIaI:

areHTH-30ipPHUKHU JAHUX, 10 OTPUMYIOTh 300paKE€HHS XMap 13 Pi3HUX JKepen (CyMyTHHUKIB,
BIUTA, nitakiB) Ta 341HCHIOIOTH iX monepeaHio (iabTpalito i 00pooKy;

areHTH-aHAJMITHKM, fAKi aHaJI3ylOTh 300paXeHHsS Ta  BWIyYalOTh  CHEIU(iIvHi
XapaKTePUCTHKH,
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areHTH-MPOTrHO3UCTH O0YNCIIIOITH METEO/IaHI HA OCHOBI BUCHOBKIB areHTiB-aHAJIITUKIB,
areHTU-KOHTEKCTYaIi3aTOpH YTOUYHIOIOTh PE3yJIbTaTH Ha OCHOBI MIOTOYHOI T'€0JIOKAITii;
areHTH-MOSICHIOBAYi (HOPMYIIOIOTh PE3YJIbTAaTH Yy BUIJSAI TEKCTY ab0 CTPYKTYpOBaHOTO
BUXOJY.
3aranpHuil npuHIKN QYHKIIOHYBaHHS 3a3HaueHoT MAC mpoiuTrocTpoBaHoO Ha puc. 4.

Arent 1: Ilonepenss 06pobra sobpamkens

'A)Gneﬁe aoﬁpa)xe:%

Arenr 2: Kitacudikamis xmap

/’é&KTBplICTHKH XMap

ArenT 3: IIporsos MeTeomaHmx CrcreMHi iHCTPYKILI

onepepsi nporaosu / KontekcryaneHi onoenenss \Qizanbhi MeTeonami

ArerT 4: KoHTekcTHHE aHams Arent 5: [losicHeHnHs pesynbraTiB

@yxwponaﬁm‘[ 3BiT

llenTpanpHE KOOPAHHATOP

Pucynok 4. [Ipuniun ¢yHKIIOHYBaHHS MyJbTHAar€HTHOI CUCTEMH T'eHepallii MeTeoJaHnX 3a
300pakKeHHSAMH XMapHHUX TTOKPOBIB.

PosrnsitHemMo OunbInl JeTanbHO TUIOBI poiii areHTiB. LliITKOM OYeBWAHO, IO areHT 3
nornepeaHboi 00pOOKU 300paKeHb MOBUHEH 3aiiMaTHCi HOpPMAai3alli€el0 SCKPaBOCTI Ta KOHTPACTy
300pakeHHs1, BUUICHHSIM XMapHOTO CEepeIOBHIIA (CErMEHTAIlisl 3 BUKOPUCTaHHAM, Hampukiaaa, U-
Net), oLiHKOO CTYIEHs CYIILHOCTI XMap. ATeHT-aHATITHK 3 Kiacudikailii XMap J1ajii BAKOPUCTOBYE
MOTIEPETHRO HABUCHY HEWPOMEpPEKHY MOJEb, 00 BHU3HAYMTH THUIl XMmap (IIEPUCTi, IIapyBari,
KyI4acTi TOLIO) 1 epeslae pe3yabTaTu areHTy-IPOTrHO3KUCTY Ul NOJANIBIINX 00YUCIIEHb.

ATEHT-IIPOrHO3UCT PO3pPaXxOBYE IMapaMETpU aTMOC(EpHOro ceperoBullla, Takl SK THUCK,
MIBUJKICTh BITPY 1 WOro HampsMOK, TUIl omafiB. /[ng reHepaiii TEKCTOBHX ONMCIB BiH MOXe
BUKOPHCTOBYBATH perpeciiiii ta Tpancdopmepui Mozeni adbo LLM, taki sk LLaVa uu Pixtral. Arent
3 KOHTEKCTHOT'O aHaji3y BUKOPHCTOBYE T€OJIOKALll0 TA ICTOPUYHI JIaHi Al YTOYHEHHS MPOTHO3Y.
Hampuknan, SKIo THIOBI 3a CTPYKTYPOIO Ta KOJIBOPOM XMapH B IEBHOMY PET10HI BIIITKY 3a3BUYail
IOB’s13aH1 3 JIOIEM, a He 3 IpajoM, Lieil areHT YTOYHHUTh pe3yibTaTH areHra-nporxHosucra. s
MOSICHEHHS Pe3yJIbTaTiB MPOTHO3Y TEHEPYIOTHCS TEKCTOBI a00 rpadiuHi KOMEHTapl y 3pyIHOMY IS
KopucTyBada ¢opmari, Harpukiaz: "CyLiiabHi MapyBaTi XMapy Ha BUCOTI 2 KM. ATMOc(hepHuUit TUCK
nig xmapamu - 1012 hPa. Onaau: nomr."

[Iporniec B3aemonii areHTiB 3a0e3me4y€e€ThCs NISAXOM IX KOMYHiKanii oauH 3 oqHuM. [Ipu
[bOMY AareHTd OOMIHIOIOThCSI JAaHUMH uYepe3 IIMHY MOBIJOMJIEHb alo 3arajibHHUI cepBep,
BUKOpUCTOBYIOUM (opmar aanux tumy JSON. Jlns koopauHanii pyHKIiOHYBaHHSA Moske OyTH
BU/AiJIEHNH [IEHTPaNi30BaHUIM areHT-KOOpAMHATOp a00 PO3MOAUIEHA cHUCTEMa MPUIHATTS PIllEHb,
sKa 3a0e3neuye y3roJUKeHICTh JIil. /111 KO)KHOro areHTa BUKOPHUCTOBYIOThHCSI OKPEMI Clieliani3oBaH1
Mozeni (Hanpukiaa, MobileNet nns knacudikanii, LLaVa ansa renepauii tekctiB). Po3ropranus
areHTiB Mokxe OyTH 3/1iICHEHO OKpeMO y XMapHOMY cepBici, Ha cepBepi abo Ha Oopty BIIJIA
3aJIeKHO B X QyHKIIIH.

IlepeBaramu 3acTOCyBaHHS MyJIbTHAr€HTHUX CUCTEM € MACIITA00OBAHICTh Ta FTHYUYKICTh, 10
HHX MOKHA JIETKO JTOJIaBaTH 1HINX areHTIB /Il HOBUX 3a1a4 (HAIIPHUKIIA, TPOrHO3yBaHHS T'PO3 U1
cHironazais). 3a gonomoror0 MAC 3aBHaHHS BUKOHYIOTHCS €(EKTUBHIIIE, OCKUIbKUA KOXKEH areHT
BIJIMIOBIIA€ JIMIIIE 332 CBOIO YaCTUHY POOOTH i MOYK€ BUKOPUCTOBYBATH Pi3HI MOjieNi a0 alrOpUTMH,
Taki K HEMpOHHI Mepexi, MOBHI MOJENl Ta METOJM MAIIMHHOTO HAaBYaHHA JUIsI KOHTEKCTHOTO
aHamizy.

Omnucana KOHLEMIS CIOCTEPEKEHHS 32 XMApHICTIO JTO3BOJUTH JIOCIIKYBAaTH TI00albHI
KJIIMaTU4H1 3MIHH, BUBYATH MPOLIECH YTBOPEHHS XMap, BIUIUB BITPOBUX TeUil Ha PO3MOALT BOJIOTH
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Ta JUHAMIKY oOmajmiB. Y MiACYMKY, 3a3HaueHa ifes MOXKE CTaTH HE JIMIIE THCTPYMEHTOM IS
MIPOTHO3YBAHHS MOTO/M, aje i BaKJIMBOIO YACTUHOK CUCTEMH MOHITOPUHTY KJIIMaTHYHUX 3MiH. Lle
BiJIKpUBA€ IIMPOKHIA CIIEKTP MOMIJIMBOCTEH 5K JJIsl HPAKTUYHOTO, TAK 1 JJIs1 HAYKOBOTO 3aCTOCYBaHHS,
0COOJIMBO B YMOBaX 3pOCTaHHS yBaru J0 KJIIMaTHYHUX 1 METEOPOJIOTIYHUX IMUTAHb Y CBITI.

Ha 3aBepuieHHs ciniJl BKa3aTu Ha MOXKJIMBI HaNpsIMH y3arajJbHEHHS IIPOMOHOBAHOTO MiIX0IY
MIPOTHO3YBAaHHS YacOBUX PsJIB UYepe3 aHaji3 JUHAMIKH BI3yallbHUX TIPOIECIB, OCOOJMBO ISt
BUPILICHHS 3a/1a4, OB’ A3aHUX 13 0€3MeK0I0 Ta ynpaBiIiHHAM pu3ukamu. CyTHICTH i/1€l HOJsrae y
BUKOPHUCTAHHI Bi3yaJIbHOTO aHAII3y MJIs TOCIIJOBHOCTI 300pa)ke€Hb YW BIJCOTMOTOKY 3 METOIO
MO/ICIIFOBAHHS YaCOBUX PsIiB, IO BiTOOPaXaroTh PO3BUTOK IpoleciB y yaci. Hampukiaz, e moxe
OyTH pO3MOBCIOPKEHHS BOTHIO HAaBKOJIO LIMCTEPHH JUISl MPOTHO3YBAaHHS KPUTUYHUX MOJIH, SK-OT
MoMeHT BHOyxy. Ilpm TakoMy cueHapii Ha BXiJ CHUCTEeMH HAIXOIHMTH BIJCOMOTIK abo cepis
300pakeHb, @ BUX1THUMH JJAHUMH € TOYKa Y Yaci 10 O9IKyBaHOT KPUTHYHOI ITO/Ii1, HAIPUKJIIA] BUOYXY
Y1 MOMEHTY IIOYATKY €BaKyallii HepCcoHaty, KOJIH MPOTH IS TIOXKEXKi BXKe BTpadae eeKTHUBHICTb.

Po3pobOka BiAMOBIMHOI CHCTEMH IITYYHOTO IHTEJEKTY BKIIIOYA€E KiIbKa KIHOYOBHUX €TaIliB.
[TounHaeThCs Bce 31 300py ¥ aHOTAI] TaHUX, IO OXOILTIOITH PealibHI 3alKCH TOXKEXK a0d0 THIIMX
aBapiiiHuX cutyarii. [[ns HaBYaHHS MOXYTh TaKOK BUKOPHCTOBYBATHCSI CHHTETHYHI JaHi, CTBOPEH1
Ha OCHOBI (i3m4HUX Mozened. Jlani ¥ije momepenHiil aHaii3 Bifeo, IMiJ 9ac SIKOTO CErMEHTAIlis
JI03BOJIE BUALIATH KpUTHYHI 007acTi. [le MojkHa BUKOHYBATH 3a JIONOMOT'0I0 MoJiesiel Ha OcHOBI U-
Net, sxi e(deKTHBHO PO3AUIAIOTH 300pakeHHs Ha HeoOXimHi 30HU. HacTymHuii kpok - aHaui3
TUHAMIKY, SIKUU mepeadadae OLIHKY XapaKTEePUCTUK, TaKuX SK IUIONIA TOLIMPEHHS BOTHIO,
SICKPaBiCTh YW 1HTCHCHBHICTb. [[JIsl IbOTO MO’KHA BUKOPUCTOBYBATH HelpoMepekHi mojeni ResNet,
Vision Transformers ta inmri. [Ticas Buy4eHHs 03HAK Bi3yaabHOI CIICHH BOHH MOAIOTHCS Y MOJIEIIb
YaCOBHX PSIJIIB, SIKa IPOTHO3YE MOMANBIINN PO3BUTOK moAil. TyT miaxonars Taki mozaeni, sk LSTM,
GRU un tpancdopmepu, siki 100pe Mpaiior0Th i3 YaCOBUMHU 3alIe)KHOCTIMU. Ha OCHOBI HaBuaHHS
BKa3aHUX MOJIEJIeH MOKHA 1Oy TyBaTH CUCTEMY, 3/IaTHY MPOTHO3YBAaTH Yac JI0 HACTAHHS KPUTHYHOI
nonii. OnucaHuwii Mpolec TaKOXX BKIIOYAE perpeciiiHi po3paxyHKd AJii TOYHOTO BHU3HAUEHHS
3QIMIIKOBOTO 4Yacy Ta KiIacH(ikallilo CTaHiB, HANPUKIAJ, HOPMAILHOTO, HEOE3MEeYHOro Y
KPUTHYHOTO.

Jist peanizartii mo1ioHOT CUCTEMU B pealbHOMY Yaci He0OX1THO MaTH 00JIaIHAHHS, 1110 3/1aTHE
00poOIISITH B1IEONOTIK 0€3 3HAYHUX 3aTPUMOK. Lle MokHa JOCATTH 3a TOMOMOTOIO CIEIiani30BaHIX
oOuncmoBasibHUX M1aTdGopm, Takux sik NVIDIA TensorRT a6o OpenVINO. IlocTiiiHuii MOHITOPUHT
JIO3BOJIIE€ TIEPEPaxXOBYBATH 3aJUINKOBHM Yac JO KPUTUYHOI MOAIl 1 TMepeaaBaTH MOMEpeIKEeHHS
NepcoHally, IO 3HAYHO MiABHUINYE Oe3neKy. MOXJIIMBOCTI 3aCTOCYBAHHS JAHOTO MIIXOAIY
HAJ3BUYANHO IMHPOKi. Y TPOMHUCIOBOCTI cucTeMa MOXe OyTH BHKOpPUCTaHA JUIsI MOHITOPUHTY
MOXEX Ha 00’€KTax i3 HeOEe3MeUYHNMH peYOBHHAMHU. BOHA Tak0oX MOXKe MPOTHO3YBAaTH PYHHYBaHHS
1HPPACTPYKTYPHUX OO0’ €KTIB, TAKMX SK MOCTH YM JaMOM, LIUISXOM aHali3y JUWHAMIKH TPILIMH YU
BiOpalliif, a y pATYBaJIbHUX CIIy’k0ax — CIOpPOTHO3YBaTH yac JJIs €BaKyalii HiJ 4ac MpUPOIHHUX
katactpod. Y mennuHii cdepi momiOHUI aHai3 MOXKE 3aCTOCOBYBATHUCS JAJIS HMPOTHO3YBAHHS
KPU30BUX CTaHIB Malll€HTIB 3a JMHAMIKOIO 3MIHU Ha MOHITOpaXx (1310J0T1YHUX MTapaMeTpiB, TAKUX SIK
CepLEOUTTS YU AUXAHHS.

3BICHO, po3po0Ka MOAIOHMX CUCTEM CTHKAETHCSA 3 BUKIUKAMHU, TAKUMU SIK AEPIIUT SIKICHUX
JaHUX, HEOOXIAHICTh BHCOKOI TOYHOCTI MPOTHO3IB Ta 3abe3medeHHss poOOTH B peajbHOMY daci.
Pa3zoMm 3 TuM, BUpIIEHHS [IUX IPOOJieM BiAKPHE HOBI MEPCHEKTUBU ISl BIPOBAIKEHHS IITYYHOTO
IHTENEKTY y MPOrHO3yBaHHs KPU30BUX CUTYaIlil, 10 0a3yIOThCs HA AUHAMIII Bi3yaJbHUX JaHHX.
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YJIK 004.8
Cobxo O.B., (Xmenvruyvkuti HayionanvHul yHieepcumem, m. XmenvHuybkuu, Yxpaina)

BI3YAJIbHA IHTEPIIPETAIISI HEHPOMEPEXXEBOI'O BUSBJIEHHS
KIBEPBYJIIHI'Y Y HU®POBUX TEKCTAX

Anomayin: 3anpononoeano memoo 6izyanbHoi iHmepnpemayii HetipoMepedtce6o2o GUAGIEHHS KibepOyrinzy 6
Yudposux mexkcmax, wjo 00360JiA€ IHMEPRPEMYSamu PileHHs: MoOeli uwooo munis Kibepoyniney. Memoo 6azyemvcs Ha
suxopucmanni mooeni BERT ons mynemunenbnosoi knacugixayii ma inmepnpemayiunoi mooeni LIME, sxa eizyanizye
6nu6 Cnie Ha piuienHs moodeni. Memoo 3abesneuye mpu gopmamu iHmepnpemayii: Koavbopogy naiimpy, 0iacpamu
JIOKAbHOT ma 3a2anvroi eadxcausocmi ciis. Excnepumenmu niomeepounu, wjo po3poonenuii nioxio sabesneuye 3pozymine
NOSACHEHHSA pileHb WMYy4YHOo20 THmMeaeKmy wooo 8UABNIEHUX MUNie Kibepoyiinzy..

Knrwuosi cnoea: xibepoynine, inmepnpemayis pesyromamis, Hetipouti mepeosci, BERT, LIME.

Abstract: A method for explaining the results of neural network detection of cyberbullying in digital texts is
proposed, which allows interpreting the model's decisions regarding the types of cyberbullying. The method is based on
the use of the BERT model for multi-label classification and the LIME interpretation model, which visualizes the influence
of words on the model's decisions. The method provides three interpretation formats: a color palette, diagrams of local
and global word importance. Experiments have confirmed that the developed approach provides a clear explanation of
artificial intelligence decisions regarding the detected types of cyberbullying..

Keywords: propaganda objects, propaganda techniques, propaganda detection, natural language processing

ITocTanoBKa npoodJieMu

[IpoGema kiOepOyJIiHTY CTae Jefalli  aKTyalbHINIOK 4Yepe3 3pOCTaHHS KUIBKOCTI
KOPHUCTYBayiB COLlIaJbHUX MEPEK, OCOOIMBO Cepell MOJO[l, 110 30UIbIIye MONUT HA CHUCTEMHU
HEWPOMEPEeIKEBOr0 BHSIBICHHS KiOepOyniHry B mudpoBux Ttekcrax [1,2]. 3aBmsku mporpecy y
BUKOPUCTaHHI Mojieliel TpaHcopmepis, 30kpema BERT, cTtano MokIMBUM €(EKTUBHO BHUSIBIISTH Ta
kiaacudikyBatu Tunu KidepOysinry [3]. OaHak CKIaaHICTh IHTEPIPETallii TAKUX MOJIe/ICH BUKIIHKAE
CYMHIBH IIOJIO 1X BAKOPUCTAHHS Yy YyTJIMBUX KOHTEKCTaX. TOMY IHTEpIIpeTallis pillieHb € KIIF0YOBOKO
JUIsl 3a0€3MedYeHHsT TOBIpU Ta MPO30pocTi. Y poOOTI 3amporoOHOBAHO METOJ TMOSICHEHHS PIIICHb
MOJIeJi I0A0 BUSIBICHUX TUIMIB KiOEpOYIIHTY, TAKUX SK JTUCKPHUMIHAIIS 32 BIKOM, €THIUHICTIO YU
TeHJIEPOM.

AHaJi3 ocTaHHIX myO0Jikanii

[IpobGnema HelipoMepekeBOro BUSBIECHHS KIOEpOYIIHTY € HaI3BUYATHO aKTyaJIbHOIO Yepe3
foro pyHHIBHMI BIUIMB Ha TMCHUXIYHE 370POB’s, OCOOIMBO MiAMITKIB Ta MonoAi. Cy4acHi METOau
IPYHTYIOTBCSI Ha TEXHOJIOTISIX OOpOOKM MPUPOJHOI MOBH, IIO J03BOJSIOTH aHANI3yBaTH LHU(POBI
TEKCTH I BUSBIICHHS Ta Kiacudikalii pizHux ¢opm kibepOyminry [4].

VY npochimkeHH1 [S] po3risiiaeThecsl 3aqadya HEHPOMEPEKEBOIO BHUABIIEHHS KiOepOyIiHTy.
Cepen npotectoBanux Mojeneil, Takux sk Random Forest, XgBoost, Naive Bayes, SVM, CNN,
RNN ta BERT, ocTanHs npojieMOHCTpyBajla HalBUILY €(peKTUBHICTb, JOCATHYBIIN 88,8% TOUHOCTI
y OiHapHil knacudikaii Ta 86,6% y MynbTHICHOIO0BIHN.

ABTopu po6oTH [6] po3poOMIM HOBHM MiAX1J A0 BUSBIECHHS KIOEpOYJiHTY, TPOTECTYBABIIN
SVM, Naive Bayes i Logistic Regression y noeaHanHi 3 pi3HUMH MeToaMi 00poOKH TeKCTy. byio
JIOBEJICHO, 110 aHam3 HacTpoiB, N-rpam, TF-IDF Ta Bu3HaueHHS HEHOPMATUBHOI JIEKCUKHU CYTTEBO
MOKPAIyIOTh TOUHICTb, JO3BOJIAIOUH TocArTH 75,17% y 3amaui knacudikariii.

[Hmii aBTOpM 30cepenunu  yBary Ha iHTepmnperanii pesynbrariB. Hanpuknan, y [7]
npezcrasieHo moaens BILSTM-LIME nis 6araroxinacoBoi kiacudikaiii kioepOyaiHry B UGPOBUX
tekcrax Twitter. Bukopucranus LIME 3a0e3neunno BUCOKY SIKICTh MOSCHEHb, aKI[EHTYIOUH YBary
Ha TOKEHaX, Kl BIUIMHYJIX Ha pillleHHS.

Hocnimxenns [8] 3anpornonysano ancam0i1s BERT ta SVM 3 HanamtyBaHHSIM mapameTpiB
Juis 6araTtokiaacoBoi kiacudikamii kibepOymiHTy y comianbHUX Menia. Mojenb moka3ana TOYHICTh
90% Ha TecTOBUX JaHUX, IEPEBEPIIMUBILY ANbTEPHATUBHI MiAX0AU. J{J1 TOSCHEHHS MPOrHO31B Oy0
BUKOpucTaHo TexHiky SHAP, sika Hajana qetanbHUN aHaji3 3HauyIIOCTi O3HAK.
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Amnani3 myOuikanii CBiTUUTB, 110 BUABJICHHA KiOepOyIIiHTY B IIM(PPOBUX TEKCTAX € BAXKIUBUM
1 0araTorpaHHUM 3aBJaHHSM, K€ aKTHBHO JOCIIDKY€EThCS 3aBISIKM 3HAYHOMY BIUTUBY IIi€1 MpoOieMu
Ha CYCHUIbCTBO. BUKOpUCTaHHS CydacHMX Mojeieli OOpOOKM MPUPOAHOI MOBH, OCOOJIHMBO
apxitektyp TpaHnchopmepiB, Takux sk BERT, nemoHCTpye BHCOKY €hEKTHBHICTh y 3agadax sk
OiHapHOi, Tak 1 MynbTHIEHOMOBOI Kiacudikarii kibepOyminry. 3okpema, BERT crabinsHO
nepeBepllye 1HIIN MiAXOIU, JOCATaluYM TOYHOCTI moHafd 85% y OinbmiocTi excnepumeHnTi. Lo
CTOCY€ThCSI IHTEpIIpeTallii, pOOOTH MiJKPECTIOIOTh BAXKIMBICTh 3a0€31EUEHHSI PO30POCTi MOIETICH.
Mertonu, Taki sk LIME ta SHAP, 103BOJsI0TE HE JIWIIE TOSCHUTH PIIICHHS MOJIEI, aje i 3poouTn
il 3acTocyBaHHS OUTBII 3pO3YMUIMM JJIsi KOpUCTyBauiB. lle 0COOIMBO BaXXIMBO Y COILIaJIBbHO
3HAYYIIUX KOHTEKCTax, JI€ MPO30pICTh pillleHb Oe3MocepeHbO BIUIMBAE HA JOBIPY 1O CHUCTEM
HITYYHOTO IHTENEKTY.

Mera p060TH Ta MOCTAHOBKA 3aBAaHb

Merta poGoTu moisirae B po3poOli MeToxy A Bi3yalbHOI iHTepHpeTamii pe3yibTaTiB
HEeWPOMEpeKeBOro BUSBICHHs KiOepOysiHry B IM(POBUX TEKCTaX, CIIPSIMOBAHOTO HA IMOSCHEHHS
pillIeHs MOJIEINI MTYYHOTO IHTEJIEKTY CTOCOBHO BH3HAUEHHX THIIB KiOepOymiHTy. 3arpornoHOBaHUN
METOJ] TOBHHEH 3a0e3leuyBaTh 3pOo3yMily IHTEpIpeTalito, sika IO3BOJISE JIIOJMHI aHalli3yBaTu
TEKCTOBI O3HAKH, 110 BIUIMHYJIM Ha PIOICHHS HelpoMepekeBoi Mozeni moao ineHTudikamii TumiB
KiOepOymiHry.

Bukaiax ocHOBHOro Matepiajy

Mertop inTeprperalii pe3ybTaTiB HeHpPOMEepEKEeBOTO BUSIBICHH KibepOyiHTy B upoBHX

TEKCTax Mepeadavyae CTBOPEHHS Bi3yalbHOTO MOSCHEHHS PIlICHb MO IITYYHOTO 1HTEIEKTY 1010

BU3HAUCHUX THIIB KiOepOyminry [9]. CxemaTuuHe NpenCTaBiICHHS I[bOIO METOIy HaBEICHO Ha
pucyHky 1.

Bxignigani:

- HagueHa Mogems BERT amg MynsTinefionosoi Knacudikari;
- IHTepIIPETAINiHA MOIENE,

- KIacH KibepOymHry;

- TH(POBHI TEKCT.

- J
!

Kpoxk 1. Illonepenas o6pobKa Ta ToKeHizanin BxigHoro nH$poBoro TEKCTY

¥

Kpok 2. My.abTHIeii010Ba KiIacA}iKanis 3a THIaMH Kidepdy.miAry

]

Kpoxk 3. Bisyanisania BILIABY 03HaK 17151 KO:KHOT0 BHTY KibepOy.miAry

|
Buxinri gani:
- CHIIA IpOABY KOKHOTO BHIY KiDepOyIIHTY B TeKCTi;
- MITKA PO HASBHICTh 200 BIACYTHICTD KOKHOTO BHIY KibepOymHTY,
- BI3yAIi3aI14 BILIHBY O3HAK HA PIMIeHHT PO BiTHeCRHHA 10 KIacy KibepOymHry 11s
KOKHOTO BHIY.

/

Pucynok 1. Cxema MeToay Bi3yasJbHOI iHTEpHpeTallii HeiipoMepekeBoro BUSBICHHS KiOEpOYIiHTYy B

U(pPOBUX TEKCTaX

BXigHUMU NaHUMM LBOTO €Tally € HaBYeHa MOJeNb TpaHCPOPMEPHOI apXiTeKTypu A
MyJIbTUIIEH0I0BOI Kinacuikaiii, 37aTHa BU3HAYaTH PI3HI TUMH KiOepOyJiHTY, Taki SK BIKOBHH,
eTHIYHUM, TeHIepHUH, pPelirifHuil Ta y3araJbHEeHMH THUI, IO OXOIUIIOE 1HII BHUIH KiOepOyIiHTYy.
Tako’k BUKOPHUCTOBYIOThCS IHTEpIIPETaLliiHI MOJE, SIK1 MOSCHIOIOTH BIUIMB OKPEMUX CIIiB U (hpa3
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Ha pe3ynbpTaTu Kiacugikarii. BXigHui TEKCT aHaNi3y€eThCs Ha HassBHICTh O3HAK KiOepOymiHTY, Micis
4OTO pe3yJIbTAaTH IMiIAI0ThCS IHTEpIpeTalii.

[epmM KpOKOM € TOKEHi3allis TEKCTY, MiCIs YOro TEKCTOBI €JIEMEHTH IEPETBOPIOIOTHCS B
YHUCJIOB1 TOCIIIOBHOCTI /IS TOAIIBIIOT 0OPOOKH HEHPOMEPEKEBOIO MOACIIITIO.

Jlpyruil Kpok MoJisirae y MpOTHO3YBaHHI MMOBIPHOCTEH HAJIEKHOCTI TEKCTY 10 KOKHOTO 3
TUIB KiOEpOyJIiHTY, OI[IHIOIYHM HAsSBHICTh O3HAK, TAaKMX SK BIKOBI, C€THIYHI YW TeHJCpHI
XapaKTePUCTHKH.

TperiMm eramoM € TOSICHEHHS Ta Bi3yami3allis pe3yibTaTiB Kiacudikaiii 3a JOIMOMOIO0
iHTepHpeTaniiHol MOJeni, sKa BHUSBIIAE BIUIMB OKpEMHUX cIiB a0o0 ¢pa3 Ha ineHTH(IKaIiI0 03HAK
kibepOyminry. s MyabTHIEHOI0BOT Kitacudikalii 4acTo 3aCTOCOBYIOThCS TaKi 1HTEpIIpeTalliliHi
merony, sik [10]: Local Interpretable Model-agnostic Explanations (LIME), sikuii renepye nokanbHi
HOSCHEHHs Ul KOXKHOIO Iepen0ayeHHsl, JeMOHCTPYIOUM, AKi cjIoBa HaiOuibllle BIUIMHYJIM Ha
pesynbrat; SHapley Additive exPlanations (SHAP), o 6a3yetbcest Ha Teopii irop i 009MCIIIOE BHECOK
KO>KHOT'O CJIOBa y IependaueHHs, BpaXxOoBYIOUH B3a€MOJiI0 Mk o3Hakamu; Transformers Interpret,
iHTepIperamniiftHa 0i0moTeka, po3pobiieHa CIEialbHO JUIsl MOJETeH Ha OCHOBI TpaHC(HOpPMEIB,
takux sk BERT, GPT, RoBERTa ta inmi momem 3 6ibmiorekn Hugging Face; meroau, 1o
BUKOPHCTOBYIOTh Attention, siki aHANI3yIOTh Bard yBaru TpaHCHOpMEpiB (HAMPUKIAL, Y MO
BERT) ans po3yMiHHSI BaXIJIMBOCTI OKpPEMHUX CIIiB 4M (ppa3 y mporieci NpUHATTS pillieHb MOAEIUIIO.

BuximHUMH NaHUMH € IHTCHCHUBHICTh MPOSBY KOXXHOTO THUIY KiOepOyIiHTYy B TEKCTI,
BUPaKEHA uepe3 HMOBIPHOCTI, SIKI IEMOHCTPYIOTh CTYIiHb HAasBHOCTI O3HAK JJIi KOXKHOI'O KJacy
KiOepOymiHry. J[Ist KO)KHOTO Ki1acy BU3HAYAETHCS MITKA, IO BKa3y€e HA HAsBHICTh a00 BiJICYTHICTb
O3HaK, NPEICTABICHUX YHMCIOBUMH 3HAYCHHAMH, fAKI BiJoOpa)katoTb HMOBIPHICTb MpPOSBY
KiOepOymiHry 3a KoxHUM TUTIOM. KpiM Toro, meros 3a0e3mnedye Bizyallizallilo BINIMBY KOHKPETHHX
O3HAK Ha MPUIHATE PIllIEHHS PO HAJEXKHICTh TEKCTY J0 MEBHOTO KiIacy KiOepOyIiHTy, /e BaXKJIHUB1
CJIOBA MiJCBIYYIOTHCS BiIIOBITHO JI0 X 3HAYYIIOCTI JJIsi KOKHOTO 3 KIIACiB.

TakuM 4MHOM HaBeAECHUH METO]l Bi3yaJlbHOI IHTEpIpeTallii pe3yabTaTiB HEHpOMepeKEBOro
BUSIBJICHHSI KiOEpOYIIHTY CIPHATHME KpalioMy pPO3YyMIHHIO Ta TOSCHEHHIO DIllIEHb, YXBAJICHUX
MOJIEJUII0 IOJ0 MYJbTUIEHOM0BOT Kinacudikamii nudpoBUX TEKCTIB Ta BU3HAYCHUX THIIIB
Ki0epOyImiHTY.

Jnst HaBuanHs mozeni BERT [11], sika 3acTOCOBYEThCSI Ha Kpolli 2 METOAY Bi3yalbHOI
1HTEepIpeTallii HelpoMepexeBoro BUsBIECHHS Ki0epOymiHTry (pUCYHOK 1), BUKOpHCTOBYBABCS AaTaceT
«Cyberbullying Classification» [12]. Lle#t gatacer MiCTUTh TEKCTOBI OBIIOMJIEHHS 3 MITKaMH, 110
BU3HAYAIOTh HAJIEKHICTh KOXKHOT'O TOBIJOMIIEHHS 10 oxHoro 3 kiaciB: Age, Ethnicity, Gender,
Religion, Other type of cyberbullying, Not cyberbullying.

st naBuanns moneni BERT mynbruneit6nosiil kinacudikarii OyB BumaneHuil kinac «Not
cyberbullying» 3 natacery «Cyberbullying Classification», ockinbku BiH HE BUKOPHUCTOBYBABCS B
HaBuanHi. Kpim Toro, kiac «Other type of cyberbullyingy OyB 3011bI11€HII 32 JOTIOMOT OO METOUKH
SMOTE-GanancyBaHHs, IO JO3BOJWJIO CTBOPUTHM CHHTETHYHI 3pa3Kd. 3aBIIKU IbOMY
MoTNepeTHbOMY eTary oOpoOku gaHuX OyB OTprUMaHUM 30amaHCOBAaHUN HAOIp JJI HAaBYaHHS MO
BERT n1st 3aB1anHs MynbTHIIEH010BOI Kiaacuikawii THIIB KiOepOyIiHTY B TEKCTOBOMY KOHTEHTI.

JIj1g OLIHKM €(peKTUBHOCTI METOY Bi3yaJIbHOI IHTEpIIpeTallii HeHPOMEPEKEBOTO BUSBICHHS
Ki0epOymiHry B IIM(PPOBHUX TeKcTax BUKOpUCTOBYBasiocs cepenonuine Google Colab. Monens BERT
Oyrna HaBueHa JuIsl Kiacudikamii Takux TUMIB KiOepOyIiHTY, sIK BIKOBHM, F€HIEPHUH, pemiriiHui,
€THIYHUI, a TAKOXK OKPEMO ISl THITY «iHIII KiOepOyITIHTH».

[Tokasuuku makpomeTpuk HaBueHoi moxaeni BERT mns mynbruneiiGioBoi kmacudikariii
TUIIB KiOepOymiHTy cTaHOBIATH: Accuracy 0.956478, Precision 0.963677, Recall 0.956478 ta F1
Score 0.960019. 1li 3HaueHHs cBiAYaTh PO BUCOKY €(hEeKTUBHICTH MOEI Y BUSBIIEHHI PI3HUX BUIIB
KiOepOyIiHTy B TEKCTOBOMY KOHTEHTI.

Jnst mocnimkeHHss OyB BUKOPHUCTAaHWUN aHTJIIOMOBHUN UHU(POBHHA TEKCT, SKU Oyio
IIPOaHaJI30BaHo /Ul BUSABIIEHHS PI3HUX TUIIIB KiOepOyiHTy 3a jonoMororo HaBueHoi mojeni BERT.
Monens BERT BusiBuiia iMOBIpHOCTI HasiBHOCTI Pi3HUX BUAIB KiOepOyiHTY B HU(POBOMY TEKCTI,
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30kpeMa BikoBuii kibepOyminr — 0.06%, erniunuit — 0.08%, reaaepuuii — 0.10%, ixmmii Tun — 0.09%,
Ta peniriiani KioepOymar — 99.86%

3acrocyBanns mozaeni LIME s BisyanbHOT iHTEeprpeTalis HeHpOMepeKeBOTO BUSBICHHS
Kib6epOyiHry 3a goromororo mojeiai BERT nist mynsTuneitdnooi kiacudikaiii TumiB Ki0epOyiHTy
B IIM(POBOMY TEKCTi JTO3BOJMIIO OTPUMATH Bi3yalibHI pe3yJbTaTH iHTepIHpeTalii BUSBICHUX TUIIIB
KiOepOyJIiHTy, BUKOPHCTOBYIOUM aOCOJIIOTHI 3HAYCHHS Bar, 10 300pakeHl Ha pucyHky 2. Jlus
NOSCHEHHsI MPUIHATUX piteHb Moaewtio BERT cioBa B inpoBoMy TEKCTI BUALISIOTHCS PI3HUMHU
KOJIbOpaMH: HaHOUIBIN SICKpAaBUM KOJNIp BKa3ye€ Ha HAHOUIBIY Bary cCjoBa, IO O3HAYa€e HOTO
HaOIBIINI BIJIMB HA PE3yNbTaT, a HAWNCBITIIIINN — HA HAMEHIITHA.

BikoBe Kibep3anaKysaHHSA:

Your God (-0.00) has (-0.00) ne (0.00) place here. Stick to (-0.00) your (-0.00) country (-0.00) and (0.00) stop (-0.00) dragging your
outdated (-0.00) traditions and religions (-0.01) into ours.

ETHiyHe KiGep3anAKyBaHHA:

vour SR S JSRE e c o RN SO < SN 25y EGEHERIR)
DUFS

leHpgepHe KiGep3ansaKyBaHHA:

Your God (-0.02) has no (0.01) place here. Stick to your (0.01) country (-0.01) and (0.01) stop (-0.01) dragging your outdated (-0.02)
traditions and religions (-0.05) into (-0.01) ours (-0.02).

Your (-0.06) God has no (-0.06) place here. Stick (0.02) to your (-0.12) country (-0.01) and (-0.03) stop (-0.03) dragging your outdated
(0.04) traditions (-0.13) and religions (-0.52) into ours.

PeniriiiHe KiGepsanAKyBaHHA:

V61 (0104) GBA(0105) Fa8(0108) FB0I0A) pace here. Stick to JEHA(0MD) GBUTHOI03) and SBRIOI0A) dragging your outdated
traditions (0.12) and FEliiGNEO1GA) nto ours (0.03).

Pucynok 2. AGconroTHE 3HAYCHHS Bard JUII BU3HAUCHHS SICKPABOCTI KOJIBOPY 3 METOIO

IHTEpIpeTallii pe3ynbTaTiB BUSBICHHS PI3HUX TUIIIB KiOepOyTiHTY B IUPPOBOMY TEKCT1

SIk BHIHO 3 PUCYHKY 2, CIIOBa 3 JOJAaTHHUMHU Ta BiI'€MHUMH 3HAUYCHHSMH BUIUISIOTHCS
OJIHAKOBOIO SICKpaBICTIO. B 1bOMy BMIIQAKYy JUIsl BU3HAUEHHS SICKPABOCTI BUKOPUCTOBYETHCS
a0COJIIOTHE 3HAYEHHS Bar, 110 MPU3BOAUTH 10 OJHAKOBOI SICKPABOCTI JIJISl BIJI'€MHUX Ta JOJATHUX
3HaueHb. Bin'eMHI 3HaYeHHS Baru 3MEHIIYIOTH WMOBIPHICTH MEBHOTO KJacy, TOAI SK JOAATHI
3HaueHHs 30UIbLIYIOTH ii, ajle O0MABa TUNU MalOTh OJHAKOBUW BIUIMB Ha NPUNHATE MOIEIUIIO
pimmenHs. /s LIME BaknuBo He nuile moka3aTd CWIy BIUIMBY CJOBa, a W HOro HampsMOK
(mo3utuBHUN abo HeraTHBHUII). ToMy peayi3oBaHO MiAXiJ, A€ BIA'€MHI 3HAUEHHS MAalOTh MEHII
SCKpaBUM KoJip 1 OKpeMHH BIATIHOK s JOJATHHUX Ta BiA'€MHUX 3HaueHb. Pe3ynbraTé Takoi
Bi3yasi3alii MMojaHo Ha PUCYHKY 3. BukopucTaHHs pi3HMX KOJIbOPIB AJS JAOAATHHUX 1 BIA'€MHUX
3HAuUEHb € BAKIMBUM, OCKIJIBKH BiJ'€MHI Bard 3MEHIIIYIOTh HMOBIpHICTh MIEBHOTO KJIACy, a JOJIATHI —
30UTBIIYIOTh. be3 11i€1 BIAMIHHOCTI, OZJHAKOB1 IHTEHCUBHOCTI PI3HUX 3HAKIB MOKYTb OyTHU CPUMHSATI
SK pIBHO3HAYHI, 110 MOKE IPU3BECTH /10 HENPABUIBHOTO PO3YMIHHS pe3yJIbTaTiB.

BikoBe Ki6ep3anakysaHHA:

Your God (-0.00) has (-0.00) no (0.00) place here. Stick o (-0.00) your (-0.00) country (-0.00) and (0.00) stop (-0.00) dragging your
loutdated (-0.00) traditions and religions (-0.01) into ours.

ETHiYHe KiGep3anAKyBaHHA:

Your God (-0:00) has (-0:00) AGN0IG0) place here. Stick to your (-0:00) EoURTTY(0:00) and (-0:00) stop (-0.00) dragging your outdated
traditions (-0.00) and religions (-0.00) into (-0.00) ours.

FeHpepHe KiGep3anAKyBaHHA:

Your God (-0.01) has (-0.01) no (0.01) place here. Stick to your country (-0.01) and stop (-0.01) dragging your putdated (-0.01) traditions
(-0.01) and religions (-0.05) into (-0.01) ours (-0.01).

Your (-0.05) God has ne (-0.05) place here. Stick (0.02) fo (-0.03) your (-0.12) country and (-0.04) stop dragging your outdated (0.03)
traditions (-0.13) and religions (-0:52) into ours (-0.03).
PeniriliHe KiGep3anAKyBaHHA:

G (0104) God FESY0104) AGXOI03) lac here. Stick S0108) JOURKONT) EGURDI0S) and SIGRIOIS] dragging your outdated
traditons (0.13) and FEIGONSOL62) into ours (0.04).

Pucynoxk 3. Iliaxig nns iHTepnperanii pe3yibTaTiB BUSBIECHHS TUIIB KIOEpOYJIIHTY 3 ypaxyBaHHIM
HETraTUBHOTO UM TIO3UTUBHOIO THUITY BIUIUBY KiHLIEBUI pe3yabTar
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JlonatkoBo Oynu CTBOpEH1 miarpamu i TpadiqHoi iHTeprpeTarii BIUIMBY OKPEMHX CIIB
U(PPOBOrO TEKCTy HA HMOBIPHICTh BiJHECEHHS I[LOTO TEKCTY /IO KOHKPETHOTO TUIY KiOepOyIiHTy
(pucyHoK 4).

IHTepnpeTauia ans knacy: Bikose kibep3anskysanus

IHTepnpeTauis Ana knacy: ETHiYHe Kibep3anakysaHHA

IHTepnpeTauis Ans knacy: lenaepre kibepsanakysaHHa

regers | - [ reigor | | esgens | [

has | ] has [ ] outdated [ ]

God I traditions | I
outdated - into - God 4 -
counry | courtry [ country | |

v — - . |
your | cod | o [

- . e ]| - |

no || outdated | ] and [ ]

s ] o [ wadtions [
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Pucynok 4. I'padiuna inTeprpeTailii BIUIMBY OKpEMUX CIiB IU(POBOro TEKCTY Ha Pe3yabTaT

Hial“paMI/I IMMOKa3yrOThb, IK MOACIIb OI_IiHIO€ Bary KOXHOT'O CJIOBa B I_[I/I(I)pOBOMy TCKCTi, 3aJIC)KHO

BiJl IOTO BHECKY B NpUIHHSATE pilleHHA. BIumB ciiB BimoOpaskeHO Yy BUTJISAI TOPU30HTAIBHHUX
CTOBIILIB, JOBXHMHA SKHX TOKa3y€ BEJIMYMHY BIUIMBY (Barm), a KoJlip — HalpsIMOK LbOTO BILIUBY.
UepBoHi CTOBIII BKa3ylOTh Ha HETaTUBHUM BIUIUB CIIIB, L0 3MEHIIYIOTh HMOBIPHICTh BIJJTHECEHHS
TEKCTY JI0 NIEBHOTO KJIacy, TOAL K 3€JI€HI CTOBII O3HAYalOTh MO3UTUBHUI BIUIUB, KU 3011bIIYy€E
HMOBIpHICTh 1IbOTO BIJHECEHHsS. BennuumHa BIUIMBY BUMIPIOETHCS UHCIOBUM 3HAUEHHSM, IO

BiJJ0OpakaeThCsl HA TOPU3OHTAJIBHIN Oci rpadika.
Taxox 0ys10 00UUCIIEHO cepeiHE 3HAYEHHS BaXKJIMBOCTI KOJKHOTO CJIOBA JIJIS BCIX KJIACIB, 1110
JIO3BOJISIE OIIIHUTH 3arajlbHUM BIUIMB KOXKHOTO cJOBa 0€3 NpPUB'A3KK /10 KOHKPETHOTO THITY
k10epOymiHry. Pe3ynbTaTt 00UMCIIEeHb MpeICTaBIeH] Y BUTIIAL AlarpaMu (PUCYHOK 5).

Ton-10 HanBaXXNMBILMX CAiB ANA BCiX TUNIB Kibep3anaKyBaHHA

religions

traditions

your

Cnoso

outdated

country

0.0

0.4 0.6 0.8
3aranbHa BaXXNMBICTb CNOBa

10

Pucynok 5. Cepenni 3HaueHHs1 BaKIUBOCTI Tor-10 CITiB /17151 BCIX KJ1ACiB
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OOumcneHHs 3aralbHOTO BIUIMBY CIIIB HA Pe3yJIbTaTH MO A7 BCiX THIIB KiOepOyIiHTy €
BOKJIMBUM JIJIs1 PO3yMiHHS poOOTH MOJIeNi Ta ii pimeHb. AHaJI3 31HCHIOETHCS Yepe3 arperaiiito Bar
CIiB, SIKI MOJIENb OIIHIOE JJIsi KOKHOTO Kiacy. BUKOpHCTOBY€ThCS MOJYyJIb Barv, M0 O3HAYAE
a0COITIOTHY BEJIMYHMHY BIUIMBY CJI0Ba 0€3 ypaxyBaHHS HOTO MO3UTHBHOTO UM HETATHBHOTO 3HAYCHHSL.
Ileti miaxin Jae MOXIJIMBICT BHUSBUTH CIIOBA, SKI MOJICJIb BBa)Ka€ BAKIMBHMH HE3aJICKHO Bij
KOHKPETHOTo THUITy KibepOysinry. Hampukiaz, cioBa, 110 CTOCYIOTHCS PI3HUX THIIIB KiOepOyIIiHTY,
MO>KYTh MaTH BUCOKI Bar"l JUTsl KUTBKOX KJIaciB. SIKIIIO CIIOBO Ma€ BUCOKHIA 3arajbHUH BILIUB, 1€ MOYKE
CBITYUTH PO HOTO yHIBEPCAIBHY POJIb Y KOHTEKCTI KibepOyminry. Hampukian, cioBa, 1110 BKa3yTh
Ha eTHIYHY IPUHAIEKHICTh a00 PEeNirito, MOKyTh MaTH BEJTMKUI BIUIMB Ha KiJIbKa KJIACiB, TAKUX SIK
CCTHIYHHUH K1OepOyIIHTY 1 «peTiriiHui KiOepOyTiHT», 110 BKa3y€ Ha TMOTEHIINHY KPOC-MOIAIbHICTh
O3HAK, SKi MOJIeTIb BUKOPUCTOBYE TSI IPUUHATTS PillleHb. SIKIO K CIIOBO Ma€ BIUIHB JIUIIIEC HA OJIUH
KJIac, I1€ M1IKPECIoe Horo crenudiyHiCTh 1 MOYKe BKa3yBaTH Ha YHIKaJIbHI MOBHI IMaTEPHU JIJIs IILOTO
BUY KiOepOymiHTy.

Omxe, Bi3yaJbHI IHTEpIIPETAIlii Pe3yJIbTaTiB HEHPOMEPEKEBOTO BUSBIICHHS KiOepOyJIiHTY B
U(POBUX TEKCTAX O3BOJISIIOTH OI[IHUTH, YH MOJICIh BHKOPUCTOBYE PEIICBAHTHI O3HAKU IS
YXBaJICHHS PIllICHb, Y ii NOBEIIHKA 3yMOBJICHA BUIAJIKOBUMH UM HEPEICBAHTHHUMHU (HaKTOPAMHU.
Hampuknan, sKIo B TEKCTiI 3'SBISIFOTBCS CIIOBA, IO HE MAalOTh 3MICTOBOTO 3B’SI3KYy 3 BIKOBUM
KiOepOymiHroMm, ajge MalTh 3HAUYHUN BIUIMB, 1I€ MOXKE CBIIYUTH MPO HASBHICTH MOMUIKUA abo
yIEepeKSHHS B MOZIETT.

BUCHOBKUA

Y po6oTi 3anmpONOHOBAHO METO] Bi3yaJILHO'1' iHTepIperanii HeﬁpOMepexceBoro BHSIBJICHHS
KiOepOyIIiHry B LU(POBUX TEKCTAX, IPU3HAYCHUH ISl [OSICHCHHS PILICHb HEIPOMEPEeKEBOI MO
OJ0 THIIB KiGepOyIIiHIY, BUABICHHUX y TeKCTax. MeTox € OpHriHalbHUM, OCKUIBKH 3iHCHIOE
IHTepIpeTaIiio pe3yJabTaTiB I KOXHOTO THITy KiOepOyJmiHTy OKpeMo, IO JOCATAE€ThCS
BUKOPHUCTAHHAM MYJIbTHIEHOIOBOrO KiacudikaTopa HeHpoMepekeBoi apXiTeKTypu TpaHchopmep i
IHTEepIpeTaIiifHOT MOJIEeIi MAIIMHHOTO HAaBYaHHSI.

3aBsIKM BHKOPHCTAHHIO HaBYeHOI Heiipomepexesoi moaem BERT s mynpruneiibaosoi
KkiacuQikauii THIB KibepOyIiHry B 11(pPOBOMY TEKCTI, MOZCIIb BUSIBIIAE Pi3Hi THIM KiOGepOyIIHTY 3
YKa3aHHSM BIZICOTKA HASBHOCTI KOXHOTO 3 HHX. 3TiIHO 3 PO3POOICHNM METOOM, Ul Bi3yalbHOI
1HTepHIpeTallii pe3yabTaTiB BUSBICHHS KiOepOyJIiHIy BUKOPHCTAHO MiAXij, 110 0a3yeTbcs Ha MOJENI
MamuHHOro HaBuanHs LIME 115 mokanbHO1 IHTEpIpeTOBAaHOCTI, 1110 TO3BOJISIE Bi3yali3yBaTH BILIUB
KOXXHOTO OKPEMOTO CJIOBA Ha PIIIEHHS MOJENI IIOAO0 HAaJEKHOCTI TEKCTY M0 TEBHUX THIIIB
KiOepOyiHry.

Merton 3abe3neuye Tpu crnocoOu Bi3yalibHOI iHTepHpeTalii HeMpoMepeXeBOro BUSBIEHHS
K16ep6yn1Hry B umi)pOBHx TEKCTaxX: 3a KOJbOPOBOIO HaJ'IiTpOIO 3a JiarpamMaMu JIOKaJdbHOT
BO)XJIMBOCTI CIJIIB 1 3a JiarpaMaMy 3arajibHOi BaXKJIMBOCTI CJiB. [HTepmperariisi pe3ysibTaTiB 3a
KOIIEOPOBOO MATITPOIO IPYHTYETHCS Ha BI/IKOpI/ICTaHHl a0COJIIOTHOT'O 3HAYEeHHS Baru 151 BU3HAYEHHS
}ICKpaBOCTl KOJIbOPY, /1€ HaOiibll sCKpaBHii KOJ‘Ilp BKaszye Ha HaOUIbIIMI BIUIMB cJOBa Ha
NPHITHSTE PIICHHs MOJIC, & HalMEHII SICKPAaBUI — Ha HAWMEHIIIHIA BIUIUB, HE3aJIEXKHO Bijl TOTO, 9K
OyB BiH O3UTHBHIM 4M HEraTUBHUM. IIpoTe, 11t HOBHO] 1HTepnpeTau11 HEOOXiIHO TAKOX pO3yMiTH
HAMPSMOK BILTHBY, OCKLTBKH BI/I'€MHI Bard 3MEHIIYIOTh HMOBIPHICTB IIEBHOIO K11acy, a J0JaTHI —
3011b1Y10TS ii. ToMy peanizoBano iHTeprperalito pimenb Mmoaeni BERT 3 ypaxyBaHHSM HanpsiMKy
BILIHBY.

BizyanpHa iHTEpmpeTartis pGSYJ'IBTaTiB 3a niarpaMaMH JIOKaJbHOT BAXJIMBOCTI CJIiB
JIEMOHCTPYE, SIK KOKHE CIOBO BIUIMBA€ HA HMOBIPHICTH BIIHECEHHS TEKCTY 10 KOHKPETHOTO THITY
KiOepOyiHTY, T03BOJISAIOUM MOOAYNTH, K MOJEIH OILIHIOE Bary KOXKHOTO CJIO0BA, 3aJI€KHO BiJl HOTO
BIUTMBY Ha MPHUHHATE pillleHHs. [HTepripeTaliisi pe3ynbTaTiB 3a JiarpaMamMy 3arajibHOT BaKJIHBOCTI
cmiB mokasye 10 cimiB, siki MOIENb BBaka€ BAXKIMBUMH UL BU3HAYCHHS THIy KibepOymiHTy,
HE3aJIXKHO BiJl KOHKPETHOTO KIIACy.

Pesynbrat eKCHepI/IMeHTlB CBII4aTh, IO 3aMPONOHOBAHMIT METOJ 3a0esmedye B13yaJ'ILHy
IHTEepIpeTAaIliio PillIeHb 11010 HeHPOMEPEKEBOTO BUSBICHHS KiOepOyIIiHTY Ha PiBHI, SKHIA JO3BOJISIE
JIOJMHI 3pO3YMITH, SIKI O3HAKU TEKCTy BIUIMHYJIA Ha NPUMHATTA PIlIEHb MTYYHUM IHTEIEKTOM.
P03p06HeHI/II/I METOA 1HTepHpeTau11 BISIBIICHHS KiOSpOYIIHTYy y HH(POBHX TEKCTaX HAICKHTH 10
KaTeropii 3aco6iB Bi3yalbHOI aHATITHKH PINICHb IITYyYHOrO IHTENEKTY, IO € HEOOXITHMM I
3a0e3MeueHHs] e€THYHOCTI, MPO30pOCTi Ta JOBIpM IO TAKUX CHCTEM IITYYHOTO IHTEIEKTY B
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CyCHUIBCTBI, OCOOJWUBO KOJU HIETHCA MPO UyTJIMBI MHUTAHHS, SK KiOepOymHr. JlocmimkeHHs
MIIKPECITIOE BAXKJIMBICTh HE TUTHKM TOYHOCTI MOJIEJICH, aie i IXHBhOT MOSICHIOBAHOCTI, IO € KITFOUOBUM
JUIst TOOYTOBH JIOBIPH JI0 CHCTEM IITYYHOTO 1HTEJIEKTY.
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Yaboan O.P., Manswk E.A. (Xwervnuyvxuii nayionanvnuu yuieepcumem, M. XMenbHUYbKUL,
Ykpaina)

IAXIA 10 IHTET'PYBAHHSA EKCIIEPTHUX 3HAHB B MOJAEJIb U-NET JJIsA
CEI'MEHTYBAHHSA 306PA’KEHb MPT CEPIIA

Anomauin: Y cmammi 3anponoHo8ano Ho8uil nioxio 00 iHmezpysanHs eKCHepmHUX 3HaHb MeOuyHUX axisyie
vy Hetipouny mepedxcy apximexmypu U-Net ons ceemenmysannsa 3o6pasxcenv MPT cepysa. 3anpononoganuii nioxio
nepeobaiac GUKOPUCMAHHA MEXAHI3MIG Y8a2U, KePOBAHUX eKCNEPMHUMU AHOMAYIAMU, MA BNPOBAOINCEHHS AHATNOMIUHUX
obmediceHb uepe3 cneyianizosani Qynxyii empam. Ile Oae 3moey nokpawumu 30amHICMb Mepedci Cmeopreamu
AHAMOMIYHO MOYHI MA KIIHIYHO 3HAUYWi ceeMeHmogari macku Ha 306pasicenni MPT cepys. [1ioxio exnouae dekinbka
NOCTIO0BHUX emanis, 30Kpema, ayeMeHmayilo Oanux 3 eKCnepmHuMy aHOMAayiAMu, RPOEKMYBAHHA MEXAHI3MY Y8azu ma
000anHa yHKYiti 6Mmpam i3 8paxyeaHHAM aHAMOMIYHUX 0OMedcenb. Excnepumenmanshi pesynomamu 3a HAOOpom OaHUx
Automated Cardiac Diagnosis Challenge y 3a0aui ceemenmygsanusi npoOemMoHCMpPY8aiu NOKPAWeHHs: npomu 6a3060i
mooeni U-Net 3a HU3KO10 MEMPUK cecMenmayii.

Kniouosi cnosa: inmeepayis excnepmuux 3Huamv, Heuponna mepedica, U-Net, ceamenmayis, MPT cepys,
Mexanizm yeazu, anamomiuni oOmedicenns, @ymkyii empam, ayemenmayis oanux, Automated Cardiac Diagnosis
Challenge.

Abstract: This study presents a novel method for integrating expert domain knowledge from healthcare
professionals into a U-Net-type neural network for cardiac MRI segmentation. By incorporating attention mechanisms
guided by expert annotations and enforcing anatomical constraints through specialized loss functions, our approach
enhances the network's ability to produce anatomically accurate and clinically meaningful segmentations. The proposed
method is detailed in several sequential steps, including data augmentation with expert annotations, the design of an
attention mechanism, and the incorporation of anatomical constraint loss functions. Experimental results on the
Automated Cardiac Diagnosis Challenge dataset demonstrate significant improvements over the baseline U-Net model
across several segmentation metrics.

Keywords: integration of expert knowledge, neural network, U-Net, segmentation, cardiac MRI, attention
mechanism, anatomical constraints, loss functions, data augmentation, Automated Cardiac Diagnosis Challenge.

Bcerym.

MarniTHo-pe3oHaHcHa ToMorpadis (MPT) cepus € OCHOBHUM IHCTPYMEHTOM Y IpoLEeci
JIarHOCTYBAHHSI Ta JIIKYBaHHS CEpLIEBO-CYJMHHUX 3aXBOploBaHb. BoHa 3abe3mneuye JeTanizoBaHe
300paKeHHS CTPYKTYp ceplis 0e3 10HI3yI0U0oro BUMPOMIHIOBaHHs. TOUHE cerMeHTYBaHHs 300pakeHb
MPT cepus € BaXXJIMBOIO AJs1 KUIBKICHOTO OIIIHIOBAaHHS (DYHKIIII ceplisl, aHali3y >KUTTE3JaTHOCTI
MioKap/a Ta IJIaHyBaHHs BTpy4aHb [1]. 3ropTkoBi HeiiponHi Mepexi (CNN), 30kpema apxiTeKkTypa
U-Net [2], moka3anu BUCOK] pe3yJIbTaTH B 33/la4aX CErMEHTYBaHHS MeIMUYHUX 300paxens [3]. OqHak
Il MOJIENI YacTO MPAIIOI0Th 0€3 IBHOTO IHTErPyBaHHS €KCIIEPTHUX 3HaHb MEAMYHUX (axiBLiB [4, 5],
10 MOK€ OOMEKYBaTH IXHIO 3/IaTHICTh CTBOPIOBATH aHATOMIYHO JOCTOBIPHI Ta KIIIHIYHO MPaBIUBI
CEerMEHTOBaH1 MaCKH.

Mennuni (¢axiBii BOJOMIIOTh EKCIEPTHUM TJIMOOKMM 3HAHHSM IIOJO aHaTOMIi cepIi,
[aToJIOTI Ta KJIIHIYHOTO 3HAYEHHS MEBHUX O3HAK Ha 300pa)kKeHHSAX. [HTErpyBaHHS LUX 3HaHb Y
Moj1eJ11 TTMOOKOr0 HaBUYaHHS MOKE 3HAUHO MABUILUTY iXHIO POAYKTUBHICTh, OCOOJIMBO Y BUITAIKAX
31 CKJIa/IHOIO0 aHaTtoMmiero un apredaktamu [6, 7]. CydacHi miaXoau, IK OT MeXaHi3MH yBaru [8] Ta
GyHKIT BTpaT 3 aHATOMIYHUMH OOMEXKEHHSMH [9], Mal0Th MEPCNEKTHBU I BIPOBAHKCHHS
€KCIepTHOrO J0CBiy B HelipoHHI Mepexi [10].

V w1iif po6OTI 3aITPONIOHOBAHO HOBUH MiJIX1/1 A0 IHTETPYBAaHHS €KCIEPTHUX 3HAHb Y HEHPOHHY
mepexxy tury U-Net s cermeHTyBaHHA 300pakeHb MPT cepus. Hamr migxin BHKOPHCTOBYE
MEXaHI3MHU yBaru, Ke€poBaHl €KCIEPTHUMHU aHOTaLISIMH, I (POKyCyBaHHS Mepei Ha KIIHIYHO
BOXJIUBUX 00J1ACTAX, @ TAKOXK BKIIIOUAE aHATOMIYHI 0OMeXeHHs y QyHKIIT BTpaT i 3a0e3nedeHHs
PEATICTUYHHIX CErMEHTAITiH.
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3anponoHOBaHUM MiAXiA,.

3anmponoHOBaHUH MiAX1A 10 IHTETPYBaHHS €KCIIEPTHUX 3HAHb Y HEUPOHHY MEPEKY BKITFOUAE
KUIbKa TMOCTIOBHUX €TarliB, 10 MOKJIMKaHI 3a0€3MeUUTH pe3yJbTaTUBHY Ta YCIIIHY 1HTETpaIlito
EKCIIEPTHHUX 3HAHb.

bnox 1. AyrmeHTarntis JaHUX 3 €KCIIEPTHUMHU aHOTAIliSIMH

Kpox 1.1. 361p ekcriepTHUX aHOTAIliN

Menuuni (QaxiBii HajgarooTh aHOTamii, IO BUAULIIOTE obOmacti iHTepecy (ROI) Ha
300paxkenusx MPT cepus, sik ot miBuii nwryHoudok (LV), mpaBuii nurynodok (RV) i miokapa,
BKJIFOYHO 3 obsacTsamu iHTepecy (ROI) MPT cepiist, 1o CXHibHI 10 TOMHJIOK CETMEHTYBaHHS 4epe3
naToJjorii abo apredakTu.

Kpox 1.2. AyrmenTariis HaBYaJbHUX JaHUX

ExcneprHi aHOTamii BUKOPUCTOBYIOTBCS JUIsI CTBOPEHHS JOJATKOBUX KaHAIIB Yy BXIAHUX
JaHUX, 110 Ja€ 3MOTY MEPEeXi HaBYaTHCA SK 32 BX1IHUMHU 300pakeHHSIMH, Tak 1 3a o0nactsmu MPT,
110 BUJILJICHI EKCIIEPTaMH.

bnok 2. MexaHi3M yBaru 3a eKCliepTHUM 3HaAHHIM

Kpoxk 2.1. InTerpanis MexaHi3MiB yBaru

Apxitektypa U-Net moaudikoBaHa uepe3 qoJaBaHHs MOpOriB yBaru (attention gates) y
3’eqHaHHAX 13 TpomyckoM (skip connections). Lli moporu oTpuMyIOTh Mamu O3HAK 3 €HKOJepa Ta
ROI-nani Big excrneprtiB, GopMyoun KOeilliEHTH yBaru, 0 BUAUISIOTh BaXKJIHBI 00IACTI.

Hexaii X, — BxigHa Mama o3HaK Ha l-omy mapi, a G — CUTHaN-HampsM BiJ €KCHEPTHHUX

anorauiid. KoedimieHT yBaru oo 004iCIO€THCA 32 (HOPMYIIOIO:
a =o(WT'[X,,G]+b),

ne W i b — Baru, 3HaueHHS SIKMX BU3HAYAIOTHC ITiJ1 YaC HABYAHHS HEMPOHHOT Mepexi, [,-] —
KOHKaTeHaIlisl, a o — CUTMOiJHa aKTUBAaIliiiHa QyHKIIis.

Kpox 2.2. Monynsuis Mar 03HaK

Koeoiientu yBaru Moaymol0Th Maly O3HAK:

X, =0 X,

Jie 0 — NOKOMIIOHCHTHE MHO>KCHHS.

HaBenena Buiie Moaysisiiisi Man O3HaK Ma€ Ha MeTI (POKYCyBaTH yBary Mepeki Ha perioHax,
K1 €KCIIePTU BBAXKAIOTh BAKJIMBHUMHU.

bnok 3. BopoBamxeHHs: QyHKIIH BTpAT 3 aHATOMIYHUMHU OOMEXEHHAMHU

Kpoxk 3.1. BuzHaueHHsI aHaTOMIYHUX CIiBBIHOIICHb

Ha ocHOBI excriepTHUX 3HAaHb MOJAMO TaKl aHATOMIYHI OOMEKEHHS:

1. MiokapJ MyCHUTb MTOBHICTIO OXOILUTIOBAaTH NOPOXHUHY LV.

2. IlopoxxanHa RV mae OyTr mpuiieriior 10 Miokap/a.

3. HenpunycTtume nepekpuTTs CTPYKTYP, SIKl HE € CYC1IHIMHU.

Kpox 3.2. ®yHkii BTpaT 1151 aHATOMIYHUX 0OMEXEHb

Hwmxue Gpopmanizyemo GpyHKIIT BTpaT, 110 CIIPOEKTOBAHI BUKIIIOYHO JJIS1 YCYHEHHS OJJaHUX
BHUIIIE OOMEKEHB!

— (yHKIIIs BTpAT OXOIUIEHHS, L, !

Loy = max (0, Area(LV \ Myocardium));
— (yHKIIis BTpaT CyMIXKHOCTI, L,
L., = Distance(RV, Myocardium);

overlap *

— (yHKIIIS BTpAT NEPEKPUTTS, L

L = Area(Overlap of non-adjacent structures).

overlap
Kpoxk 3.3. 3aranbHa (yHKIIS BTpaT Uil aHATOMIYHUX OOMEKEHb

3aranbHa (pyHKIIISI BTpAaT BU3HAYEHO B TaKUi crocio:
L = Aenclenc T Aagilagi + Aovertan -

anatomy enc —enc adj —adj ‘overlap —overlap ?
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ne 4 — BaroBi KoeQiIlieHTH.

enc 1

s A

overlap
VY po6oTi Oy710 BIpOBaHKEHO TOAATKOBI 3a/1a4l, III0 BPaXOBYIOTh €KCIIEPTHI 3HAHHS.

a) Busnauyenns anaromiuHux opieHTupiB: [IporHo3yBaHHs KJIFOYOBUX TOYOK aHATOMII.
0) Kimacudikaris a3 cepust: BusnaueHnns a3 ceprieBoro 1ukiy (CHCToa, 1acToa).

Onuc aaHuX.

JIst OIiHIOBAHHS 3aIpPONOHOBAHOTO Miaxoay Oyino BUKopucTaHO Halip maHux Automated
Cardiac Diagnosis Challenge (ACDC) [1]. Huxue moiamMo KOPOTKY XapaKTepUCTUKY HAOOpy JaHUX
ACDC.

— IMamientn: 100 ocib i3 pi3HUMHU KapiOJIOTIYHUMHU CTaHaMu (HOpMa, 1HGApKT MioKapia,
JuiaTaliiHa Kapaiomionaris, rimeprpodidHa KapaioMionaris, aHOMaJIii MPaBoro IMUTYHOUYKA).

— 300paxenns: [TocminosHi 3pizu MPT, 110 0XOIUTIOIOTE BECh CEPIIEBUN ITUKIL.

— Anotanii: Pyuni cermentyBanss LV, miokapaa Ta RV pa3om 3 eKCiepTHUMHU aHOTAIlISIMHA
ROI ta opientupis.

— IMomin nanux: HaBuanpHa BuOipka (70 marienTiB), Bamigamis (10 marieHTiB), TECTyBaHHS
(20 marieHTiB).

Ipoueaypa HaBYAHHA MOJEJII.

Mogens Tnubokoro HaB4aHHS 3a apxitekryporo U-Net HaBueHO uyepe3 MiHiMi3aIlio
KOMO1HOBaHO1 (yHKIIiT BTpaT:
Lot = Lasg + Aanstomy L

anatomy —anatomy
ne L, — QyHKIIA BTpAaT CErMEHTyBaHHs, L,, — QyHKIig BTpar 11 J0JaTKOBHX 3a1a4, A

‘anatomy

+A4, . L

total aux —aux !

1 A4, — BaroBi KoeQilieHTH.

BaroBi xoedimienTH A iHIIaNI30BaHO EMIIPUYHO, 3 ONNISAIYy HA MPOJYKTUBHICTH 3a
BaJinariiauM Habopom. besnocepenHpo sl HaBYaHHS MOJICII BUKOPUCTaHO onTtuMizaTop Adam i3
MOYAaTKOBOIO MIBHIKICTIO HaBuaHHs (learning rate) 1x10*. Takox 10 mporiecy HaBYaHHS OyJI0
3aCTOCOBAHO pAHHE 3aBEPIICHHS HABYaHHS Ta METOJA peryjspu3anii s 3anoOiraHHs
NIepeHAaBYAHHIO.

Pe3ysibTaTH.

PesynbratuBHiCTh cerMeHTyBaHHs oiiHeHO 3a koedimientoM Dice (DSC), inaexcom
XKaxkkapa (Jaccard), Bincrannto ['aycaopda (HD) Ta cepeanboro moBepxHeBoo BicTaHHIO (ASD).

B tabnuui 1 momano pe3ynbraTd 00UKCIOBaIbHUX €KCIIEpUMEHTIB. 3 Tabuuii 1 6aunmo, 110
IHTerpyBaHHs €KCIEPTHUX 3HAHb 3HAUHO MOKpaIlly€e MPOIYyKTUBHICTh cerMeHTyBaHHs Mozeni U-Net.
BuxopucranHs MexaHI3MIB yBaru, KEpOBAaHHMX EKCIEPTHUMM aHOTALlISIMM, A€ 3MOTYy Mepexi
¢dokycyBaTuCs Ha KJIIHIYHO B@KJIMBHUX OOJIACTSAX, IO MiABMILYE SKICTh MOJAHHS O3HAK Yy IMX
perioHax. AHaromiuHi (QYyHKIIi BTpaT 3a0e3Ne4yyloThb BUKOHAHHS PEATICTUYHUX aHATOMIYHUX
CHIBBIHOIIEHB, 1110 3MEHIIIY€ TaKi TOMHUIIKH, K HEKOPEKTHE MapKyBaHHs a00 MEPEKPUTTS CTPYKTYDP.

Tabmuus 1 — [lopiBHAHHS pe3yabTaTUBHOCTI cerMeHTalii 6a3oBoi mozeni U-Net ta
3ampOITOHOBAHOTO MAXOIY

Hinsuka Mogeinb DSC, Jaccard, % HD, ASD,
cepust % 1 1 MM | MM |
LV Bbazosumit U-Net | 93.0+1.6 | 87.0+2.0 8.0+22 12+04
Hamr migxiz 955+1.2 | 91.5+1.5 55+ 1.8 0.8+0.3
. basosuii U-Net | 85.5+2.5 | 76.0+3.0 9.8+3.1 1.5+0.5
Miokapn .
Hanr migxin 89.0+£2.0 81.0+2.5 6.5+£23 1.0+04
RV Bbazosmit U-Net | 90.0 +£2.1 82.0+25 85+25 1.3+04
Hamr migxizn 93.0+1.7 | 86.5+2.0 6.0+2.0 0.9+0.3

[TopiBHSIHHS MIIXO/IB 32 yciMa METPUKAMU CETMEHTYBAHHSI UTIOCTPOBAHO HA PUCYHKY 1.
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1 KHERATVBHI METPUKN CErMeHTYBaHHS MO3NTVBHI METPUKMN CErMEHTYBaHHS

T Kpawe

Basosa mosenb U-Net T Kpauwe Basosa Mogens U-Net
3anponoHoBaHWi Niaxia 3anpornoHoBaHWA Niaxin

! Kpaue

3HaveHHsa

1 Kpaue
1 Kpaue 20

3HaYeHHsA
6 m 0N W osowm e u ow

HD ASD Dice Jaccard
MeTpukn MeTpukn

a) 0)
Pucynok 1 — I[lopiBHSHHS pe3yJbTaTiB CETMEHTYBAaHHS MOJICIIEH: 3apONOHOBAHHUN TAXiJ] IEMOHCTPYE
TTOKpareHHs 3a MmeTpukamMu Dice Ta Jaccard (o3UTHBHUI TpeHN) 1 3HIKCHHS TTOMHJIOK 3a MeTpukaMu HD
ta ASD (HeratuBHU# TpeHn) y MOpiBHAHHI 3 6a30Bor0 Mozemto U-Net.

PucyHok 1 nemoHcTpye, 110 3amponoHOBaHUH MiaXia nepesepirye 6a3oBy Mozenb U-Net 3a
BCIMa KJIFOYOBUMH METPHKAaMH cerMeHTailii. 3okpema, Buii 3HaueHHss DSC ta Jaccard cBiguatsb npo
MOKpaIlleHy SKICTh CErMeHTallli, 1[0 Kpalle BiJINOBia€ peaJbHUM aHATOMIYHUM CTPYKTypam.
Bopnouac, 3umkeni 3HayenHs HD ta ASD Bka3dyroTh Ha MEHII T€OMETPUYHI MOXHOKH Yy
CErMEHTOBaHUX CTPYKTYpax, 110 € BAXKIUBUM JJIs 3a0€3MeUeHHs aHATOMIYHOI JOCTOBIpHOCTI. OTXKeE,
IHTEeTpaIlisi eKCIepTHUX 3HaHb, MEXaHI3MIB yBaru Ta aHATOMIYHUX OOMEXKEHb Yy (YHKIIT BTpaT
3a0e3neyye MOKpAaIleHHS pe3yibTaTiB CErMEHTAllll, 10 BKa3y€ Ha 3HAYHY IMEPCHEKTUBY IHOTO
X0y JJIE MEAMYHOTO JIIarHOCTYBaHHS 32 aHAJII30M MEIUYHUX 300PaKEHb.

Huxde Takox 1moaaMo Kijbka 00MeXeHb 3aIIPOMOHOBAHOTO MM1JIX0Ty, 30KpeMa!

1. BanexHicTe BiI ekcrepTHUX aHoTauid. OTpUMaHHSA aHOTAlid MOXKE OYyTH TPUBAIUM
MPOLIECOM 1 HE 3aBXKAH JOCTYIMHUM Y MPAaKTUYHUX YMOBAX.

2. JlonaBaHHS MEXaHI3MIB yBaru Ta aHaTOMIYHUX BTPAT 301IbIIy€e OOUMCITIOBATILHI BUTPATH.

3. OTpuMaHi KiIbKICHI pe3yJbTaTH € MepcrneKTUBHUMHU 3a Habopom manux ACDC, ogHak
noTpiOHA JT0IaTKOBA BaiIallis 32 IHIMUMHU Habopamu JaHux 300paxens MPT cepiis.

BHUCHOBKM.

VY 1iit pobOTI 3aIPOIIOHOBAHO BJIOCKOHAJIEHUH M1AX1J 10 IHTETpYBaHHS €KCIIEPTHUX 3HAHb Y
MoJenb Tiarnbokoro HaByaHHsS Tuy U-Net i cermeHTyBaHHs 300paxkens MPT cepis.
BuxopucranHs MexaHi3MiB yBaru, 110 KEpoBaH1 €KCIIEPTHUMHU aHOTALIIMHU, Ta BIIPOBAKEHHS
aHaTOMIYHUX (PYHKIIIHM BTpAT 1aj0 MOXIIUBICTh MOKPALIUTH CETMEHTYBaHHs MPOTH 0a30BOi MoJeNi
U-Net. OTpumani pe3yJbTaTy BKa3ylOTh Ha IMiIBUIIEHHS TOYHOCTI, aHATOMIYHOT JOCTOBIPHOCTI Ta
KJIIHIYHOI pesleBaHTHOCTI CETMEHTAL1}.

[Tomanbia podoTa Oyze 30cepekeHa Ha 3MEHIIICHH] 3aJIeKHOCTI BiJl €KCTIEPTHUX aHOTAIlil Ta
PO3LIMPEHH] 3aCTOCYBAaHHS LIbOTO MiJXOY JI0 IHIINX 3aB/IaHb CETMEHTYBAHHS B MeIMYHIN
Bi3yasizauii.
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MULTI-TASK LEARNING WITH LEARNED CONTEXTUAL INPUTS

Abstract: This paper investigates learned-context neural networks, presenting a multi-task learning framework
that utilizes a fully shared neural network structure augmented with an input vector containing trainable task-specific
parameters. The architecture is notable for its efficient task adaptation mechanism, which leverages a low-dimensional
task parameter space. Theoretically, it is demonstrated that a single scalar task parameter can suffice for universal
approximation across all tasks—an advantage not necessarily shared by more conventional architectures. Empirical
results reveal that, for similar tasks, the dimensionality of the task parameter correlates with task complexity, yet a
compact parameter space remains feasible in most scenarios. Moreover, the task parameter space is characterized by
stable and predictable behavior, facilitating workflows such as model updates with incoming data or learning new tasks
while keeping shared parameters fixed. The architecture also exhibits resilience in handling datasets where individual
tasks are represented by limited data points. Performance comparisons across ten datasets highlight its competitiveness
against similar neural network architectures.

Keywords: learned-context neural networks, multi-task learning, task adaptation, universal approximation, low-
dimensional parameter space, task-specific parameters, model updating, data efficiency.

Our research focuses on addressing non-linear regression problems, particularly those
involving multiple related tasks characterized by complex input-output dynamics and limited data
availability. Such challenges are common in engineering and industrial systems, where tasks often
share structural similarities. Examples include scenarios with repeated instances, like turbines in a
wind farm, or batch processes, such as tracking biomass growth in aquaculture or agricultural fields.
These tasks typically involve sparse data but are inherently similar by nature. To tackle these
problems, an adaptable and highly flexible architecture is essential, enabling efficient task-specific
adjustments even with minimal data. Moreover, the system must support practical operations
necessary for maintaining machine-learning models, such as handling time-dependent variations or
integrating new tasks that emerge over time. For instance, this might involve model updates to adapt
to changing conditions or the incorporation of previously unobserved tasks.

We investigate neural networks that incorporate learned contexts. This architecture features
two key components: a feedforward neural network with shared parameters across tasks and a set of
task-specific parameter vectors. These task parameter vectors are additional inputs to the network,
influencing its computations. Termed "learned contexts," they are optimized during training alongside
the shared network.

Learned contexts offer an effective mechanism for task adaptation, achieving high adaptability
with minimal task-specific parameters. Furthermore, they enable the discovery of a structured task
parameter space—one that encapsulates the continuous latent characteristics of tasks rather than
merely encoding task-specific information. Such a well-structured task parameter space is
advantageous as it allows for training the shared network only once, shifting focus to task-specific
parameters during daily operations. This approach proves particularly beneficial in scenarios where
re-training the entire model is labor-intensive, computationally costly, involves frequent new data, or
IS constrained by limited access to the shared model [1,2].

Theoretical and experimental findings suggest that the learned-context neural network
architecture is particularly well-suited for multi-task problems involving similar tasks or tasks with
limited data. Its capability to represent tasks using low-dimensional and smooth parameter spaces
makes it advantageous in such scenarios.

From a theoretical perspective, scalar task parameters are sufficient for a learned-context
neural network to universally approximate all tasks, as demonstrated in Section 4. The use of
contextual inputs enables meaningful task adaptations, even in compact network configurations.
While the adaptability of the network improves with its size, this flexibility introduces a risk of
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overfitting to specific tasks, which could undermine the benefits of multi-task learning. Therefore,
careful tuning of hyperparameters is essential.

Experimentally, the optimal number of task parameters depends on the specific problem.
However, the architecture generally supports extensive task adaptation using only a few parameters
(Section 5.6). When training multiple tasks simultaneously, increasing the dimensionality of the task
parameters often enhances performance (Section 5.7). Conversely, a smaller parameter space might
be preferable when applying the shared model to new tasks. Practitioners must balance parameter
dimensionality based on domain knowledge and the model's intended use. The architecture’s ability
to learn task parameters that capture latent task properties (Section 5.7, Appendix D) facilitates
efficient updates and maintenance of the model in practice.

On full datasets, learned-context neural networks performed comparably to benchmark
architectures (Section 5.4). On reduced datasets, their performance declined less sharply, indicating
superior robustness (Section 5.5). All tested networks utilized standard fully connected layers,
focusing on task adaptation rather than maximizing performance on specific datasets. Nevertheless,
the learned-context approach could potentially be extended to other architectural designs.

The training process for learned-context networks has been robust, similar to that of other
architectures (Section 5.4). The theoretical construction underpinning Theorem 2 suggests initializing
task parameters to zero, as this avoids "task-encoding™ local minima, which are more likely with
random initialization. Zero initialization promotes similar tasks to follow aligned training trajectories,
encouraging grouping of related tasks and fostering a well-structured parameter space. This reduces
the risk of redundant parameter regions representing the same phenomena.

The study explores a fascinating architecture in the field of multi-task learning known as
learned-context neural networks. This architecture is designed to address common challenges in
machine learning, such as dealing with tasks that have limited data or require frequent updates due to
dynamic conditions. By introducing trainable, task-specific parameters into a shared neural network,
the approach achieves a balance between flexibility and efficiency, making it especially valuable in
real-world scenarios where data may be sparse or tasks are interdependent. At its core, the learned-
context neural network consists of a fully shared neural network augmented by trainable task
parameters. These parameters act as contextual inputs, enabling the network to adapt to each task
without requiring significant modifications to its structure. The ability to use low-dimensional task
parameters ensures that the architecture remains computationally efficient while still being capable
of capturing the unique characteristics of each task.

From a theoretical perspective, the study demonstrates the remarkable adaptability of this
architecture. It is proven that even a scalar task parameter is sufficient for the network to approximate
any set of tasks universally. This is an impressive feat, highlighting how learned-context neural
networks can balance simplicity and power. Moreover, the architecture’s design ensures that the task
parameter space is well-behaved, meaning it represents latent properties of the tasks in a meaningful
and interpretable manner. This is particularly useful for applications that require frequent updates, as
it eliminates the need to retrain the entire network. The research also delves deeply into empirical
evaluations, comparing learned-context neural networks with two well-established architectures:
context-sensitive networks and last-layer neural networks. Across ten datasets, ranging from synthetic
examples to real-world applications such as school performance analysis and disease monitoring, the
learned-context networks consistently demonstrated competitive performance. They excelled in
scenarios where tasks had limited data or were inherently diverse, showing less performance
degradation compared to the other architectures.

One of the most striking observations was how the network’s performance was influenced by
the dimensionality of task parameters. While increasing the number of parameters generally improved
performance, the benefits plateaued beyond a certain point. Interestingly, the architecture showed
robustness even when task parameters were kept minimal, a feature that enhances interpretability and
simplifies model management. For example, in datasets like "Sine and Line," where tasks could be
represented with a few nonlinear basis functions, the network performed equally well with a minimal
number of task parameters.
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The training process was another area of focus. The learned-context neural network was
shown to have a stable and reliable training mechanism. The study recommended initializing task
parameters to zero, which facilitated grouping similar tasks and promoted smoother learning
dynamics. This was particularly effective in preventing overfitting and ensuring that the task
parameter space captured meaningful variations across tasks.

Additionally, the study explored how the architecture responded to reduced training datasets.
Even when the data was drastically reduced to 10% of its original size, the learned-context networks
maintained competitive performance, outperforming other models in most cases. This robustness
makes the architecture highly suitable for practical applications where data availability may be
limited.

The research also highlighted the architecture's potential for visualizing and interpreting task
parameters. For example, in datasets related to health metrics like obesity or height, the task
parameters aligned closely with domain-specific properties, offering insights into the underlying
trends and patterns.

What sets this architecture apart is its adaptability and versatility. Unlike traditional multi-task
learning approaches, learned-context neural networks do not rely on pre-defined task encodings or
rigid structures. Instead, they dynamically adjust to the needs of each task, making them suitable for
a wide range of applications. The study emphasizes that while the architecture was evaluated using
fully connected neural networks, its principles could be extended to other designs, such as
convolutional or transformer-based networks, opening doors for further innovations.

In conclusion, the learned-context neural network emerges as a robust and practical solution
for multi-task learning challenges. Its ability to adapt to diverse tasks with minimal parameters,
combined with its theoretical soundness and empirical robustness, positions it as a promising tool in
both academic research and real-world applications. The study also paves the way for future
exploration, suggesting that this architecture could be further refined and extended to tackle even
more complex and dynamic learning problems.
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DEEP LEARNING FOR PARTIAL DISCHARGE DETECTION IN ELECTRICAL
MACHINES

Abstract: Testing for faults in the production line of automotive traction machines is crucial to guarantee their
expected lifespan. Repetitive partial discharges (PDs), triggered by anomalies in the insulation system, are a major cause
of premature failures in electrical machines, making reliable PD detection highly significant. This study introduces deep
learning (DL) techniques to enhance the differentiation of PD signals from background noise, outperforming
conventional amplitude-based PD detection methods used in production lines. A systematic procedure for data extraction
and labeling is outlined to ensure accurate datasets from various PD measurements. Additionally, the datasets are
enriched with low signal-to-noise ratio PD pulses through a specialized data augmentation technique. A comparative
analysis is performed on 13 different types of neural networks, including convolutional, recurrent, and fully connected
architectures, using diverse time-frequency representations of the input signals. For each of the 13 network
configurations, hyperparameters related to input transformation, network structure, and optimization solver are tuned to
ensure a fair and comprehensive evaluation. The study reveals that a two-dimensional convolutional neural network
combined with a continuous wavelet transform achieves the highest accuracy, approximately 99.76%, on a test dataset
consisting of PD signals from previously untested objects. All DL models examined in this study outperform the traditional
threshold-based PD classification approach. Notably, even for PD events with amplitudes close to the noise level, the
best-performing model achieves a detection rate of about 95%. However, without the proposed data augmentation
method, the DL models fail to reliably distinguish small PD pulses from background noise.

Keywords: Fault testing, Partial discharges, Deep learning, Data augmentation, Convolutional neural networks,
Time-frequency representations, Continuous wavelet transform, Signal-to-noise ratio.

End-of-line testing for traction machines is a critical step in ensuring the safety and quality of
electric vehicles during mass production. Even minor defects in the insulation system, such as small
cavities, can arise during manufacturing. When these weak spots are exposed to high voltage, they
may result in localized breakdowns of the insulation, known as partial discharges (PD). These events
not only accelerate the aging of the insulation but also lead to premature failures in electrical
machines. To mitigate these risks, comprehensive PD testing of stator windings is mandated for all
traction machines.

In this testing, surge voltages mimic real-world operational stresses caused by fast-switching
inverters. Sensors like ultra-high-frequency antennas and high-frequency current transformers are
employed to detect electromagnetic emissions and currents produced by PD events. However,
differentiating PD signals from background noise in industrial environments poses a challenge due
to the low signal-to-noise ratio (SNR). Achieving reliable PD detection is essential, both to ensure
the robustness of the tested stators and to minimize costly and unsustainable false rejections.
Conventional commercial PD detection systems typically use a straightforward amplitude-threshold
approach. However, more advanced techniques have emerged, leveraging either feature-based
machine learning or deep learning (DL). Unlike feature-based methods that rely on manual extraction
of key data characteristics, DL approaches autonomously learn to identify relevant features from raw
or transformed input data. This eliminates the need for expert-driven preprocessing and allows for
greater accuracy and adaptability. Despite the advancements, PD testing under the specific conditions
of non-sinusoidal voltages—required for traction machines—remains underexplored. EXxisting
methods often use data transformations such as phase-resolved patterns or frequency-domain
representations, but these are not well-suited for the high-speed surge voltages encountered in this
context. To address these challenges, this research introduces DL methodologies tailored for PD
classification in traction machines, emphasizing improved sensitivity and reduced false alarms. It also
highlights innovations such as systematic data labeling and augmentation techniques to enhance the
accuracy of small PD detection.

Neural Network Frameworks and Time-Frequency Transformations
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This research begins by exploring the foundational concepts underlying neural networks and
their specific implementations for the detection and classification of partial discharges (PD). Neural
networks like Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and
Fully Connected Neural Networks (FCNNs) play a crucial role in pattern recognition tasks. Each
network type is tailored for unique strengths in processing time-sequential or spatial data.

1. Convolutional Neural Networks (CNNSs)

CNNs leverage a hierarchical structure where convolutional and pooling layers extract and
condense features from input data. By simulating the convolutional operation, feature maps are
created, allowing CNNs to detect spatial patterns effectively. The combination of layers enhances the
network’s ability to discern increasingly complex patterns, which is vital for classifying PD signals
amidst noise.

2. Recurrent Neural Networks (RNNs)

Designed for sequence data, RNNs capture temporal dependencies. Variants like Long Short-
Term Memory (LSTM) networks address the challenges of vanishing gradients through gated
mechanisms that regulate the flow of information and gradients. Bidirectional LSTMs (BiLSTMs)
extend this by processing sequences in both forward and reverse directions, further enriching the
contextual understanding of data. Another variant, Gated Recurrent Units (GRUSs), simplifies the
structure by reducing the number of gates, making them computationally efficient while retaining
performance.

3. Time-Frequency Transformations

Time-frequency transformations, such as Short-Time Fourier Transform (STFT), Continuous
Wavelet Transform (CWT), and Stationary Wavelet Transform (SWT), are employed to analyze
signals in both time and frequency domains. These methods convert raw signals into representations
that highlight key characteristics of PD events:

STFT partitions a signal into overlapping segments to analyze localized frequency changes.

CWT decomposes a signal across scales using wavelet functions, preserving fine temporal
details.

SWT, unlike discrete wavelet transforms, avoids downsampling, ensuring consistency in
temporal alignment.

These transformations enable neural networks to process signal data in a manner that enhances
detection accuracy, especially for subtle PD events obscured by noise.

The study employs a sophisticated setup to test partial discharges (PDs) in automotive traction
machines. The testing focuses on three-phase hairpin stators, which are critical components in these
machines. Twelve stators were selected for the tests, with eight impregnated and four unimpregnated,
categorized based on their insulation thickness and power classification. The distinction in insulation
levels and power ratings allowed for a comprehensive analysis under varied operational conditions.

The experimental arrangement is meticulously designed. A surge generator (ST3810)
equipped with a 10 nF capacitor serves as the high-voltage source. This generator simulates real-life
stress by applying voltage surges to different phases of the stator windings. To capture the PD signals,
ultra-high frequency (UHF) broadband antennas, including a horn antenna and a logarithmic-periodic
antenna, are positioned strategically at both ends of the stator. The antennas are fine-tuned with analog
high-pass filters to isolate the PD signals from distortions caused by the high-voltage pulses.Signal
acquisition is performed using a state-of-the-art 12-bit digital oscilloscope operating at a sampling
frequency of 10 GHz. This ensures high-resolution data collection for each surge event. Additionally,
a high-voltage probe monitors the terminal voltage of the stators, adding another layer of precision to
the testing procedure.

To ensure accuracy, the testing process adheres to the standards outlined in DIN IEC/TS
61934. This involves progressively increasing the peak voltage and meticulously recording the
resulting antenna signals. The data, containing potential PD events, is subsequently processed in
MATLAB for detailed analysis. This rigorous setup not only enhances the reliability of PD detection
but also provides a robust foundation for generating datasets essential for further research in partial
discharge classification. By addressing the challenges posed by diverse insulation conditions and
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noise interferences, the setup ensures that the study’s findings are both comprehensive and applicable
to real-world scenarios. Creating a robust training dataset is critical for effectively applying neural
networks (NNSs) in the classification of partial discharges (PDs). However, due to the stochastic nature
and random timing of PD events, reliably labeling such signals is a challenging task. The following
methodology systematically addresses this issue by preprocessing raw data, isolating noise and PD
events, augmenting data for smaller PD pulses, and optionally transforming the time-domain data
into time-frequency representations.

Data Preprocessing

Signals captured by antennas undergo preprocessing to prepare them for reliable analysis. This
involves filtering out signals affected by clipping or saturation, as these may exceed the dynamic
range of the data acquisition system. A digital high-pass Chebyshev IIR filter with a passband
frequency of 200 MHz is applied to suppress distortions caused by high-voltage (HV) surges.
Following this, signals are normalized relative to their noise levels. Noise levels are determined using
data from the pre-HV surge interval, which excludes potential PD events. This normalization ensures
a consistent thresholding process for subsequent PD extraction.

Noise Extraction

The interval preceding the HV surge serves as a noise-only segment, providing a clean dataset
for background noise analysis. By dividing this segment into smaller snippets of a specified length
(e.g., 400 samples), a representative noise dataset is created. These snippets, devoid of PD events,
serve as benchmarks to distinguish background noise from actual PD pulses.

PD Extraction

To reliably extract PD events from the data, only signals surpassing a specific signal-to-noise
ratio (SNR) threshold (e.g., SNR > 4) are labeled as PD. A window of data surrounding the identified
peak is extracted and labeled. This process is repeated with random shifts in window placement to
ensure robustness in model training, enabling the neural network to identify PD pulses even when
they are not perfectly centered in the analysis window.

Dataset Augmentation

The NN's ability to detect low-SNR PD events is enhanced through dataset augmentation. PD
pulses are scaled down to various target SNR levels and overlaid onto noise snippets. This
augmentation ensures the inclusion of weak PD signals in the training set, making the NN more adept
at distinguishing subtle PD events from noise. By varying target SNRs across a range (e.g., 0.9 to 4),
the augmented dataset captures a wide spectrum of PD characteristics.

Dataset Overview

The datasets are carefully balanced to avoid class bias by randomly discarding excess samples
from overrepresented categories. Separate datasets are designated for training, validation, and testing,
with some exclusively reserved for evaluating generalization on unseen data. Additionally, data
diversity is increased by incorporating signals from different antennas, stator configurations, and HV
curve forms.

Data Transformation

To explore alternative input formats, time-frequency transformations are applied to the
datasets. Techniques such as Fast Fourier Transform (FFT), Short-Time Fourier Transform (STFT),
Continuous Wavelet Transform (CWT), and Stationary Wavelet Transform (SWT) are used. These
methods provide additional insights by representing PD events in both time and frequency domains.
The transformed data is then used as input for further analysis, enabling comparisons of classification
performance across different representation methods.

This systematic process of data generation and transformation ensures that the NN models are
trained on a comprehensive and representative dataset, optimizing their ability to accurately detect
and classify PD events.

In this research, the process of network and hyperparameter tuning plays a pivotal role in
optimizing the classification performance of neural networks for partial discharge (PD) detection.
Initially, specific parameters such as batch size and solver type were assessed to identify their impact
on training outcomes. This initial optimization revealed that different solvers, such as stochastic
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gradient descent with momentum (SGDM) and adaptive moment estimation (ADAM), influenced
performance based on the network type. For example, SGDM demonstrated superior results for
certain convolutional neural networks (CNNs), whereas ADAM performed better for recurrent neural
networks (RNNSs) like LSTM and GRU. The next phase involved refining input transformations and
network architectures. This step sought to balance computational efficiency with model complexity.
Convolutional layers, known for their localized feature extraction capabilities, were configured with
varying kernel sizes and layer depths. These configurations allowed the researchers to evaluate the
trade-offs between network depth, the number of feature maps, and overall model accuracy. For
recurrent networks, the number of layers and hidden units was adjusted to identify trends in
performance improvements without overfitting.

A comprehensive comparison of 13 network configurations combined with input transforms
such as Fast Fourier Transform (FFT), Short-Time Fourier Transform (STFT), and Continuous
Wavelet Transform (CWT) was conducted. Among these, the two-dimensional CNNs with CWT
input consistently achieved the highest classification accuracy. The researchers optimized
hyperparameters, including the learning rate, using Bayesian optimization to ensure robust
performance across different datasets. The findings also highlighted the importance of preprocessing
steps such as logarithmic transformations for specific input types like CWT. Additionally, applying
data augmentation techniques significantly enhanced the network's ability to detect low-amplitude
PD pulses, which are often obscured by background noise. Ultimately, the research demonstrated that
carefully tuned CNN architectures could achieve detection accuracies exceeding 99%, even for
challenging datasets. This marks a substantial improvement over traditional threshold-based PD
detection methods, showcasing the potential of deep learning for improving reliability and precision
in electrical machine diagnostics.

The study culminates in an extensive comparison of various deep learning models, designed
to classify partial discharge (PD) signals with remarkable precision. Leveraging optimized
hyperparameters, the researchers trained these models on a carefully curated dataset (Trl) and
validated their performance on unseen data (Te2). The overarching goal was clear: to push the
boundaries of PD detection, surpassing traditional threshold-based methods in both accuracy and
robustness. As the models were put to the test, the 2D Convolutional Neural Networks (2DCNNS)
emerged as clear frontrunners. When paired with Continuous Wavelet Transform (CWT) or Short-
Time Fourier Transform (STFT) input data, these networks achieved an impressive classification
accuracy of nearly 99.75%. This level of precision was consistent across training, validation, and
generalization datasets, proving the robustness and adaptability of the 2DCNNSs. Interestingly, while
other models like Gated Recurrent Units (GRU) and Bidirectional Long Short-Term Memory
networks (BiLSTM) demonstrated strong performance, they slightly lagged behind the 2DCNNSs.
Notably, 1D Convolutional Neural Networks (LDCNNS) also performed admirably, particularly when
working directly with raw data or utilizing Stationary Wavelet Transform (SWT) input. However,
when FFT-transformed data was used, the accuracy dropped slightly, highlighting the importance of
input transformation in maximizing model potential. The findings went beyond mere accuracy. A
deep dive into the Receiver Operating Characteristics (ROC) of the best-performing models revealed
exceptional true positive rates (TPR) above 99.5%, coupled with false positive rates (FPR) as low as
0.14%. These metrics underscore the reliability of the deep learning approaches in distinguishing PD
events from noise—a critical factor in industrial settings where safety and cost-efficiency are
paramount.

What’s even more fascinating is how these advanced models fared against conventional
threshold-based methods. While traditional techniques struggled with low signal-to-noise ratio (SNR)
scenarios, the 2DCNNs maintained a detection rate exceeding 94% even for PD signals barely
distinguishable from background noise. In contrast, threshold-based classifiers were prone to higher
false rejection rates or lower detection accuracy, depending on the chosen sensitivity threshold. This
study doesn’t just highlight the superiority of deep learning over traditional methods—it paves the
way for practical applications in industrial environments. By addressing challenges like noise
interference and signal variability, these models hold the promise of enhancing production line
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efficiency while ensuring the reliability of automotive traction machines. The 2DCNNSs, in particular,
stand out as a beacon of innovation, combining computational efficiency with unparalleled accuracy.

In the context of large-scale production of electrical machines, the importance of partial
discharge (PD) testing has been emphasized as a critical step for ensuring the expected lifespan of
automotive components. Traditionally, PD detection methods in production lines rely on amplitude
threshold-based decisions as specified by DIN IEC/TS 61934. However, these methods struggle to
distinguish PD signals with low signal-to-noise ratios (SNR) from background noise, leading to
potential inaccuracies in classification.

This research offers a comprehensive solution by exploring 13 neural network (NN)
architectures, including fully connected, convolutional, and recurrent networks, to determine the most
effective deep learning (DL) approach for PD classification. These networks are enhanced by
employing optional time-frequency transformations of input signals to improve their ability to
differentiate between PD and noise. The study introduces a systematic methodology for data
extraction, labeling, and augmentation, which significantly contributes to the quality and robustness
of the training datasets. This process includes the generation of small PD pulses to ensure the models
can accurately detect even subtle PD signals. Additionally, a meticulous hyperparameter optimization
process was conducted, addressing factors such as batch size, solver selection, and learning rate, to
refine network performance. The evaluation, carried out on datasets from previously unused test
objects, revealed that two-dimensional convolutional neural networks (2DCNNS) utilizing short-time
Fourier transforms (STFT) or continuous wavelet transforms (CWT) demonstrated superior accuracy,
achieving approximately 99.75%. The 2DCNNs incorporate four convolutional layers and two fully
connected layers in their classification head, trained with a stochastic gradient descent with
momentum (SGDM) solver and a batch size of 16. Similarly, models like GRU and BiLSTM with
stationary wavelet transform (SWT) inputs, along with 1DCNNSs using raw data, performed almost
as well, with accuracy differences of less than 0.1% compared to the 2DCNNs. The study also
underscores the efficacy of the proposed data augmentation technique, which enables NNs to
recognize small PD pulses more effectively. For instance, detection rates for signals with SNRs
between 0.9 and 1 increased from 27% to 95% when data augmentation was applied. Furthermore,
analysis through ROC curves demonstrated that all the investigated DL models surpassed traditional
amplitude-based PD detection by achieving higher true positive rates (TPR) and lower false positive
rates (FPR). This improvement directly contributes to enhanced product reliability and reduced false
rejections in manufacturing.

Ultimately, the research highlights the potential of DL models to generalize across diverse PD
signal types and noise conditions, paving the way for their integration into real-time production line
applications. Despite the computational demands and the interpretability challenges associated with
DL algorithms, the proposed approach marks a significant advancement in PD testing methodologies.
The study concludes by suggesting further exploration into lightweight and advanced neural network
architectures to optimize computational efficiency and expand application scopes.
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DISCOVERING TECHNOLOGICAL OPPORTUNITIES WITH NEURAL NETWORKS
AND LITERATURE ANALYSIS.

Abstract: This study introduces a novel approach to identifying technological opportunities for advanced
technologies by analyzing information extracted from academic literature. These opportunities are framed as potential
business applications of technologies in novel, untested domains, such as industries or business processes that have yet
to be explored. Unlike traditional methods that rely on alternative datasets, this approach emphasizes the value of
leveraging emerging practices documented in scientific publications. The proposed methodology translates business
cases described in research articles into a structured triad: technology, industry, and process, and evaluates their impact
on business performance. From an extensive review of 33,285 papers, 14,739 distinct triads were identified. Using this
dataset, an artificial neural network was developed to predict the potential impact of yet-to-be-tested combinations of
technology, industry, and process. The methodology was applied to 11 advanced technologies, including 3D printing,
artificial intelligence, blockchain, high-performance computing, digital applications, geo-spatial technologies, immersive
environments, the Internet of Things, open and crowd-based platforms, proximity technologies, and robotics. For each
technology, a "technological opportunity map" was created to pinpoint optimal untapped areas for future applications.
Furthermore, the method differentiates between combinations with high and low confidence in expected impact, enabling
businesses to prioritize the most promising opportunities. The paper concludes with a discussion on the implications of
this methodology for both industry practitioners and academic research.

Keywords: technological opportunities, advanced technologies, business applications, literature analysis,
neural networks, technology-industry-process triad, opportunity mapping, emerging practices.

Introduction.

Technological opportunities represent the untapped potential for advancing industries,
markets, and products. Exploring such opportunities is a strategic priority for companies seeking
long-term growth. By identifying and analyzing these opportunities, businesses can position
themselves at the forefront of innovation, ensuring they remain competitive in an ever-changing
landscape. Historically, companies have relied on systematic methods to predict and leverage
technological trends. These include qualitative techniques like expert consultations and scenario
planning, as well as quantitative methods utilizing patent data. While patents offer valuable insights
into technological progress, they have limitations, particularly in the early stages of technological
development, when opportunities often remain undefined. Moreover, patents focus on applied
outcomes, potentially overlooking the foundational scientific knowledge that frequently drives
innovation.

In contrast, academic literature offers a rich repository of emerging practices and theoretical
advancements. Scientific research often precedes technological application, providing a unique
vantage point for identifying nascent opportunities. This study leverages the potential of academic
publications to bridge the gap between scientific exploration and business application. By focusing
on case studies documented in peer-reviewed journals, the research creates a structured framework
for identifying and evaluating the intersection of technologies, industries, and processes. Recognizing
the growing influence of artificial intelligence and big data, this methodology integrates machine
learning techniques to predict the impact of untested combinations. Through a detailed analysis of
existing triads and their business implications, the study enables companies to make informed
decisions about where to focus their efforts and investments. This narrative not only highlights the
importance of embracing innovative approaches to technology forecasting but also underscores the
transformative potential of using literature-based datasets. By aligning academic insights with
practical applications, the study provides a roadmap for navigating the complex and dynamic
landscape of technological advancement.

Understanding and harnessing technological opportunities is essential for fostering
innovation. The process of identifying such opportunities involves analyzing how technological
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advancements can reshape industries, businesses, and markets. However, this endeavor is often
hindered by a lack of comprehensive information, especially during the early stages of technological
development. When technologies are in their infancy, limited data restricts the ability to predict
growth trajectories, apply curve-fitting techniques, or use stochastic models to anticipate future
trends. This gap creates a significant divide between scientific exploration and the practicalities of
commercialization and production.

Emerging technologies often face uncertainty regarding their developmental paths and
potential commercial applications. Researchers, therefore, prioritize uncovering the most promising
technological areas, guiding investments in specific companies, industries, or markets. Importantly,
this exploration isn’t limited to new technologies. Established technologies, even those beyond their
early development stages, can also hold untapped potential. For this reason, the methodology
described in this study was applied to 11 advanced technologies across varying phases of evolution.
The analysis of technological opportunities benefits greatly from strategic intelligence and forward-
looking assessment tools. These instruments enable decision-makers to chart pathways and evaluate
success potentials. By anticipating emerging technologies and products, such assessments not only
highlight innovations yet to be developed but also reveal new markets for existing technologies. This
approach, broadly termed as "technological opportunity analysis," incorporates related concepts such
as convergence analysis, vacant technology forecasting, and identification of emerging product or
service opportunities. A key aspect of convergence analysis is its focus on the intersection of existing
technological fields, where new inventions often arise. This dynamic evolution of technologies
emphasizes the transformative potential of overlap between distinct domains, offering avenues for
innovative applications in industries previously unlinked. Similarly, vacant technology analysis uses
tools like maps or matrices to visually identify gaps in current technological implementations. These
visualizations are instrumental in predicting potential connections between unassociated fields and
directing efforts toward unexplored opportunities. Emerging and promising technologies,
characterized by novelty, rapid growth, and transformational potential, are vital to this discourse.
Such innovations often possess untapped market potential and can redefine industries. Accurately
forecasting their effects before widespread adoption is critical, as uninformed investments carry
significant risks. Researchers rely on this predictive capability to align decisions with the anticipated
trajectories of technological progress. In parallel, identifying opportunities for products or services
that align with technological advancements plays a foundational role in innovation. Such efforts guide
the early stages of product or service development, optimizing business processes or extending
product ranges to meet emerging market demands. Technological opportunity analysis can adopt
either qualitative or quantitative methodologies. Qualitative methods, such as Delphi surveys or
scenario planning, leverage expert insights but often suffer from subjectivity, time constraints, and
limited scalability to specific industries or markets. Conversely, quantitative approaches rely on
structured data from patents and scientific literature. Advances in artificial intelligence, machine
learning, and natural language processing have enabled the analysis of large datasets, uncovering
patterns and correlations that human experts might overlook. Patents have traditionally been the
primary resource for such analysis, offering structured and standardized data. However, they have
limitations, such as delayed availability, reliance on historical trends, and a narrow focus on existing
innovations. In contrast, academic papers provide richer contextual insights, especially regarding new
technologies in nascent stages. These publications often showcase the theoretical and practical
implications of innovations, offering a broader perspective than patents. The strengths of academic
literature lie in its coverage of diverse industries, detailed case studies, and emphasis on novel
applications. By manually analyzing such papers, researchers can extract valuable insights into
emerging practices, enabling a more nuanced exploration of technological opportunities. Although
time-intensive, this approach mitigates the shortcomings of automated techniques, which often
overlook deeper content within the body of scholarly works.

The methodology is organized into three main phases, each building upon the other to
systematically uncover technological opportunities using cutting-edge technologies and academic
research as a foundation.
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In the first phase, researchers construct a dataset of "emerging practices™ by conducting a
thorough manual analysis of academic papers. These practices are categorized into triads consisting
of technology, industry, and process, along with the expected impact on business performance. The
meticulous analysis focuses on extracting detailed examples of how technologies have been
implemented in specific contexts and the associated benefits. The aim here is to capture
comprehensive insights into innovative applications from academic literature, ensuring that the
dataset is rich with nuanced data.

The second phase utilizes this dataset to train an artificial neural network. By leveraging the
triads as input, the model identifies patterns and relationships between technology, industry, and
process, predicting their potential impact. The training process incorporates rigorous validation steps
to ensure the model's reliability and accuracy. The network's task is to extrapolate the potential effects
of combinations that have not yet been observed, essentially forecasting new opportunities for
technological applications.

In the final phase, the trained neural network is deployed to assess untested combinations of
technology, industry, and process. Each combination is analyzed for its predicted impact, categorized
as either market-oriented (e.g., revenue growth or customer satisfaction) or organizational (e.g., cost
savings or efficiency improvements). To provide actionable insights, the methodology introduces a
confidence threshold for predictions, highlighting the most reliable opportunities while flagging those
with higher uncertainty. Results are visualized through "opportunity maps,” which graphically
represent promising areas for future exploration, offering a clear and practical guide for businesses
and researchers alike. The methodology is robustly tested across 11 advanced technologies, ranging
from artificial intelligence and blockchain to 3D printing and robotics. By focusing on emerging
practices and employing artificial neural networks, the approach bridges the gap between theoretical
exploration and practical application, making it an invaluable tool for identifying high-impact
technological opportunities.

Out of these, only 8,406 papers were deemed useful for the analysis, as the remainder either
lacked relevant data on emerging practices or were inaccessible online. These selected papers
facilitated the identification of 14,739 practices, encapsulated as combinations of technology,
industry, and business processes. Interestingly, certain practices required the incorporation of
multiple combinations to accurately capture their application, as they spanned various industries or
processes. A diverse range of journals contributed to this rich dataset, including prominent
publications like Annals of Operations Research, Computers and Operations Research, and European
Journal of Operational Research. These sources demonstrated substantial variation in their focus on
emerging practices, revealing trends in academic interest and technological applications. The
artificial neural network, trained on the dataset, provided key insights into these combinations.
Utilizing categorical variables such as technologies, industries, and processes, the network effectively
predicted the potential market and organizational impacts of untested combinations. The neural
network's architecture featured a single hidden layer optimized through SPSS, ensuring robust
predictions tailored to real-world applications.

Across the evaluated technologies, 71.35% of potential combinations remain unexplored,
signaling a significant opportunity for innovation. These vacant combinations, mapped through
technology-opportunity frameworks, highlight promising areas where businesses can pioneer new
applications. For instance, technologies like 3D printing exhibited higher shares of vacant
opportunities, suggesting untapped potential in industries yet to adopt these innovations. Furthermore,
the study underscored the pivotal role of processes in shaping outcomes. Sensitivity analysis revealed
that process variables had the highest normalized importance, followed by industry and technology.
This finding highlights the critical influence of how technologies are integrated into operational
contexts to drive organizational and market performance. The methodology employed not only
enhances our understanding of emerging practices but also provides actionable insights. By focusing
on combinations with confident predictions of success, businesses can strategically prioritize areas
with the greatest potential impact. This structured approach ensures that investments in new
technologies are both informed and targeted, fostering a path toward transformative innovation.
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The conclusion section of the paper outlines the innovative methodology proposed for
uncovering technological opportunities using insights derived from scientific literature and artificial
neural networks. This approach demonstrates significant predictive power, as validated through
testing across 11 cutting-edge technologies. However, the methodology has its limitations, primarily
tied to the nature of the dataset and the reliance on manual content analysis. This time-intensive
process stems from the substantial volume of scientific literature published annually and the varying
relevance of these works to specific technological applications. Furthermore, the absence of certain
applications in the database might lead to an overestimation of potential combinations. As new
technologies emerge, integrating them into the existing classification and retraining models from
scratch become necessary, posing additional challenges. The study emphasizes that scientific
literature serves as a valuable repository for identifying emerging practices, allowing for the
development of tools that uncover technological opportunities. Future research should focus on
exploring individual technologies in greater depth, as listed in the supplementary tables, to refine the
methodology further. Continuous monitoring of scientific literature is essential to incorporate newly
emerging technologies and assess their commercial viability and developmental progress. To mitigate
the challenges of manual analysis, efforts are underway to integrate advanced natural language
processing tools that can pre-filter relevant abstracts and prioritize the most promising papers. This
automation aims to significantly reduce the time required for analysis. Moreover, with advancements
in artificial intelligence, it will soon be feasible to automate the extraction of emerging practices
directly from scientific texts, streamlining the process and enabling quicker identification of
technological opportunities.

In summary, while the methodology outlined is robust and offers substantial insights, its
application can be further enhanced through ongoing technological advancements and
methodological refinements. This iterative process ensures the approach remains relevant and capable
of addressing the dynamic landscape of technological innovation.
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GAIT-BASED EMOTION RECOGNITION WITH PRIVACY PRESERVATION

Abstract: Recognition of emotions based on gait has attracted growing attention due to its diverse applications
in areas such as healthcare, social interaction analysis, surveillance systems, and smart technologies. Unlike other
biometric traits, gait offers distinct advantages, including the ability to perform remote identification and maintain
reliable performance even in unstructured environments. Additionally, analyzing gait patterns can provide meaningful
insights into an individual's emotional condition. This study introduces the “Walk-as-you-Feel” (WayF) framework, an
innovative method for emotion recognition from gait that prioritizes user privacy by avoiding reliance on facial
information. To overcome challenges associated with limited and imbalanced datasets, the approach incorporates a
tailored balancing technique designed for deep learning models. Advanced architectures like Adapted Inception-v3 and
EfficientNet are utilized for feature extraction, while emotion classification is achieved through Gated Recurrent Units
(GRUs) and a Transformer Encoder. The experimental evaluation highlights the effectiveness of WayF, achieving an
average recognition accuracy of approximately 77% in its optimal configuration. Furthermore, when excluding neutral
emotions, the system attains an impressive accuracy of 83.3%, surpassing many methods that incorporate facial features.

Keywords: gait, emotion recognition, biometric, privacy, deep learning, feature extraction, grus, transformers

Introduction.

Understanding human emotions through various recognition techniques has become an
increasingly significant topic across numerous domains. Emotions play a pivotal role in enhancing
human interaction, influencing decision-making, and shaping behavioral patterns. Fields such as
healthcare, social communication, surveillance, and advanced technology applications have
particularly benefitted from advancements in emotion recognition. Researchers have explored
multiple biometric approaches to detect emotional states, including speech analysis, facial expression
recognition, EEG signals, and gait patterns. Among these, gait analysis has emerged as a distinct and
promising method for emotion recognition.

Gait, fundamentally defined as the pattern of an individual's movement during walking,
transcends its basic role as a means of mobility. It serves as a unique identifier, capable of
distinguishing individuals based on their specific walking styles. This biometric trait offers
remarkable advantages over traditional methods, such as remote identification, which does not require
physical proximity, and effectiveness under diverse, uncontrolled conditions. Gait recognition
systems can operate efficiently even with low-resolution data and do not rely on the active
cooperation of individuals. This makes gait-based identification a practical choice for real-world
scenarios, where conventional techniques like facial recognition might fail due to obscured or masked
features.

Beyond identification, gait analysis provides profound insights into emotional states, bridging
the gap between physical behavior and affective conditions. Variations in gait patterns are known to
correlate with different emotional states, making it possible to infer an individual's mood or
psychological disposition through their walking behavior. This interplay between gait dynamics and
emotions introduces innovative opportunities for emotion recognition technologies, particularly in
privacy-sensitive applications.

Unlike facial recognition, which directly captures and interprets expressive features, gait
analysis offers a less intrusive alternative, safeguarding personal privacy while delivering actionable
insights. This unique aspect is particularly relevant in environments where individuals may
intentionally mask their faces or where privacy concerns limit the use of facial-based recognition
systems. By focusing solely on gait patterns, researchers aim to eliminate biases and limitations
associated with face-dependent methods, paving the way for broader adoption of emotion recognition
systems in surveillance, healthcare monitoring, and beyond.
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Recent advancements in gait analysis have delved into optimizing feature extraction and
improving resilience against intra-class variations. Despite these developments, the field faces
challenges, particularly when excluding facial cues, which are traditionally strong indicators of
emotional states. Addressing these challenges requires innovative approaches that not only enhance
the accuracy of gait-based emotion recognition but also respect ethical considerations such as user
privacy.

In this context, the "Walk-as-you-Feel" (WayF) framework introduces a groundbreaking
solution. This novel approach leverages advanced deep learning architectures to analyze gait patterns
while deliberately excluding facial information. By prioritizing privacy-preserving mechanisms, the
WayF framework broadens the scope of biometric applications, offering a robust method to decode
emotions solely from walking behavior. The research presents a multifaceted contribution, including
the development of a dataset balancing procedure to address limitations posed by small and uneven
data distributions, and the integration of cutting-edge feature extraction models like Inception-v3 and
EfficientNet, combined with Gated Recurrent Units (GRUs) and Transformer Encoders for
classification.

Through rigorous experimentation, the WayF framework demonstrates promising results,
achieving competitive accuracy levels even when benchmarked against state-of-the-art methods that
utilize facial cues. This work not only highlights the potential of gait as a standalone biometric for
emotion recognition but also underscores the importance of privacy-centric design in modern Al
systems.

Narrative Summary of Related Works

Emotion recognition plays a crucial role in various fields, such as psychology, healthcare,
communication, and technology, offering deeper insights into human experiences and improving
engagement. Among the methodologies for emotion recognition, two dominant approaches have
emerged: video-based analysis and skeleton-based analysis. Each provides unique advantages, with
video-based approaches capturing a broad range of emotional cues, including facial expressions,
while skeleton-based methods focus on key body movements, offering a more abstract yet privacy-
preserving perspective.

Video-Based Approaches

Recent advancements in video-based emotion recognition have leveraged gait analysis
alongside deep learning architectures. For instance, Bhattacharya et al. introduced a Bi-Modal Deep
Neural Network (BMDNN) that combines domain-specific discriminative features with deep latent
features, achieving state-of-the-art results on the Edinburgh Locomotion MoCap dataset. Similarly,
Yin et al. developed a MultiScale Adaptive Graph Convolution Network (MSAGCN) capable of
dynamically selecting spatial-temporal features, outperforming previous techniques in accuracy.
Another notable contribution by Chai et al. involved the use of multi-head pseudo-nodes to address
feature imbalance and enhance the global understanding of joint interactions. These approaches
highlight the potential of video-based methods to decode complex emotional states by analyzing a
range of visual cues.

Skeleton-Based Approaches

In the realm of skeleton-based emotion recognition, researchers have explored innovative
strategies to extract emotional insights from body movements. Karg et al. demonstrated the feasibility
of recognizing emotions through gait patterns by using dimensionality reduction techniques like
Principal Component Analysis (PCA) and achieving high accuracy with person-specific data. Venture
et al. extended this approach by analyzing joint angles derived from motion capture data, revealing
promising results in classifying emotions.

Crenn et al. introduced a method that combines body posture analysis with motion features,
employing a Support Vector Machine (SVM) classifier to distinguish emotional expressions
effectively. Expanding on this, the team later developed a system that computes spectral differences
between neutral and expressive motions, further refining the classification process. Similarly, Daoudi
et al. proposed analyzing temporal dynamics of skeleton joint movements in 3D space, utilizing
covariance matrices and Riemannian geometry for emotion classification.
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These works collectively emphasize the richness of gait and skeletal data in decoding
emotions, providing robust alternatives to traditional facial expression analysis. Each approach
contributes to advancing the field, highlighting unique challenges and opportunities for future
exploration in emotion recognition.

Methods

The methodology adopted in this study focuses on leveraging advanced deep learning
architectures to analyze gait patterns for emotion recognition, ensuring user privacy by excluding
facial cues.

Transformers-Encoder

Initially introduced in the seminal paper “Attention Is All You Need” (Maswani et al., 2017),
Transformers have revolutionized sequence data analysis by overcoming limitations of Recurrent
Neural Networks (RNNs). Their self-attention mechanism enables them to identify relationships
across distant elements within a sequence, making them particularly well-suited for processing
variable-length input data. For this study, only the encoder component of the Transformer architecture
is utilized, as it efficiently extracts discriminative features for classification tasks. The use of
Transformers in the "Walk-as-you-Feel" (WayF) framework exemplifies an innovative approach in
computer vision by exploring their application beyond natural language processing.

Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are employed for spatial feature extraction. Two
architectures—EfficientNetV2-L and Inception-v3—are utilized in different pipeline configurations.
EfficientNetV2-L, known for its superior design integrating progressive learning and advanced
architectural modifications, excels in performance when paired with Transformers-Encoder.
Inception-v3, which emphasizes efficient parameter usage and advanced factoring strategies, shows
robust compatibility with RNN-GRU networks.

Gated Recurrent Units (GRUSs)

GRUs, a variant of recurrent neural networks, are selected for their efficiency in handling
sequential data while mitigating issues like vanishing gradients. With a simpler architecture compared
to LSTMs, GRUs utilize Update and Reset gates to manage information flow and ensure robust
temporal feature processing. This makes them a reliable choice for tasks requiring detailed sequential
analysis, such as gait-based emotion classification.

MediaPipe Pose Landmark Detection

For landmark extraction, the MediaPipe library is employed to predict 33 body points from
video frames. By excluding facial features, the framework emphasizes body motion, ensuring privacy
preservation. The extracted body landmarks serve as inputs for the deep learning pipelines.

Pipeline Design

Two distinct pipelines are developed:

1. EfficientNetV2-L + Transformers-Encoder: This pipeline excels in capturing temporal
features through the Transformer’s attention mechanism, particularly effective for neutral and
sad emotions.

2. Inception-v3 + RNN-GRU: Designed to process sequential data, this configuration shows
strong performance for happy and angry emotions.

Both pipelines involve pre-processing the video frames into feature vectors, which are
subsequently classified by either the GRU or Transformer network. The selection of 240 frames per
video ensures sufficient data for capturing intricate gait patterns.

Experimental Protocol: Narrative Overview

The experimental design aimed to evaluate the feasibility of emotion recognition using gait
data while maintaining user privacy. The study utilized the E-Walk dataset, chosen specifically for
its absence of facial information. This unique dataset ensured the focus remained solely on gait-based
analysis without relying on facial features, a crucial aspect of preserving privacy.

Dataset Characteristics and Preprocessing

The E-Walk dataset includes 84 video clips featuring various walking styles. Each video was
rated by multiple participants on a scale of 1 to 5 for emotions such as happiness, sadness, anger, and
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neutrality. The scoring system averaged these ratings to classify each video by the dominant emotion.
A critical preprocessing step involved extracting 240 frames from each video using the OpenCV
library, resulting in a total of 20,160 frames. Subsequently, the MediaPipe Pose Landmark Detection
library was employed to extract body landmarks, generating gait masks that represented body
movements. This process excluded facial landmarks to ensure privacy and minimize the potential for
misclassification caused by facial occlusion.

Data Balancing Strategies

A major challenge addressed in this study was the imbalance inherent in the dataset, with
certain emotions being overrepresented. To overcome this, the researchers employed both under-
sampling and over-sampling techniques. Under-sampling reduced the dominance of overrepresented
classes, while over-sampling replicated instances of underrepresented emotions. This balancing
ensured that each emotional category contributed equally during training, enhancing the model's
robustness.

Implementation of Pipelines

Two distinct machine learning pipelines were developed for the analysis:

1. CNN + Transformers-Encoder Pipeline: This pipeline integrated EfficientNetV2-L as the
convolutional neural network (CNN) for feature extraction, paired with Transformers-
Encoder blocks for classification. The Transformer's auto-attention mechanism and internal
masking provided nuanced temporal analysis of gait patterns.

2. CNN + RNN-GRU Pipeline: This second pipeline employed the Inception-v3 network for
CNN-based feature extraction, followed by classification using Gated Recurrent Units
(GRUs). The GRU architecture was chosen for its simplicity and effectiveness in handling
sequential data.

Each pipeline processed the feature vectors generated by the CNN, enabling the downstream
classification algorithms to discern subtle temporal correlations.

Experimental Findings

The experiments were conducted under two conditions: balanced and unbalanced datasets. In
balanced setups, data was divided into training and testing sets in an 80:20 ratio. This configuration
allowed for a rigorous evaluation of the models while maintaining sufficient training samples.
Notably, the CNN + Transformers-Encoder pipeline demonstrated superior performance for certain
emotions, such as neutrality, while the CNN + RNN-GRU pipeline excelled in recognizing happiness.
Together, these pipelines highlighted complementary strengths.

When the neutral emotion was excluded—due to its inherent ambiguity in psychological
contexts—the best-performing configuration achieved an accuracy of 83.3%, underscoring the
framework's potential.

Conclusions
This research introduces the innovative "Walk-as-you-Feel" (WayF) framework, pioneering
an approach for recognizing emotions through gait analysis, prioritizing privacy by excluding facial
features. By leveraging body movement data, the method focuses on sequences derived from skeletal
motion. To overcome the inherent challenges of small and unbalanced datasets often encountered in
emotion recognition tasks, this study incorporates tailored balancing techniques optimized for deep
learning systems. The architectural foundation of WayF is built on adapting state-of-the-art
convolutional neural networks (CNNs) such as Inception-v3 and EfficientNet, which serve as feature
extractors. These features are then processed by advanced classifiers like Gated Recurrent Units
(GRU) and Transformers-Encoder models. Through rigorous experimentation, the WayF framework
achieved competitive results, with an average accuracy of 77%, a figure that rivals existing methods
which incorporate facial data. Significantly, when the "neutral” emotional state is omitted, the
accuracy improves to 83.3%. These findings underscore the potential of gait-based emotion
recognition, particularly in scenarios where facial cues are unavailable or intentionally excluded to
ensure user privacy. The reliance on skeletal data expands the usability of this method in diverse
applications, from healthcare to surveillance, while maintaining ethical considerations regarding

personal data.
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Future research directions include exploring hybrid datasets, such as the partial incorporation
of synthetic data like E-Gait, which could provide broader benchmarks for model training. Such
endeavors would necessitate modifications to ensure the dataset aligns with WayF’s emphasis on
non-facial analysis. Additionally, conducting ablation studies on the impact of individual emotions,
informed by E-Walk's detailed emotion scoring, could provide deeper insights into the emotional
nuances of gait. This shift from a purely classification approach to potentially integrating regression
modeling could enhance the framework's predictive capabilities. Further expansion of the research
could involve integrating multimodal data, such as audio or physiological signals, which may provide
complementary insights into emotional states. Evaluating the system's real-time performance in
dynamic environments will also be critical in determining its practical viability and robustness.
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EVOLUTIONARY SWARM FORMATION FOR AUTONOMOUS ROBOTS

Abstract: Autonomous robot swarms have emerged as a promising solution for various space and aerospace
applications due to their adaptability, resilience, and ability to self-organize. These systems are particularly useful in
tasks such as asteroid surveillance, convoy protection, and counter-drone operations, which require maintaining stable
formations around a central target. However, the challenge lies in managing swarms with varying robot numbers and
diverse initial conditions. In this research, we introduce an innovative method for the self-organization of autonomous
robotic swarms, where individual robot movements are guided solely by relative positional data (range and bearing)
derived from radio beacons. To optimize swarm behavior, we employ an evolutionary algorithm to determine optimal
parameters, such as speed and attraction/repulsion forces, ensuring robust formation stability across different initial
setups and failure scenarios. We tested this approach through realistic simulations across six scenarios, involving swarms
of 3, 5, 10, 15, 20, and 30 robots. The results demonstrated the effectiveness of the optimized configurations, achieving
stable circular formations in all 420 test scenarios. Additionally, we validated the method using physical experiments
with E-Puck2 robots, confirming the swarm's ability to self-organize around a central target and maintain formation
despite robot failures, achieving consistent success in all trials.

Keywords: autonomous robots, robot swarms, self-organization, evolutionary algorithms, swarm optimization,
stable formations, aerospace applications, robot resilience

Introduction.

Autonomous robot swarms have emerged as a viable solution for space and aerospace
applications due to their adaptability, robustness, and self-organizing abilities. These swarms are
particularly useful in tasks like asteroid monitoring, convoy protection, and counter-drone operations,
where stable formations around a central target are essential. However, managing varying swarm
sizes and diverse initial conditions presents a significant challenge.

In this research, we propose a novel method for organizing autonomous robot swarms, where
each robot’s movement is determined solely by its relative position, measured through range and
bearing from radio beacons. We employ an evolutionary algorithm to optimize the swarm’s
parameters—such as speed and attraction/repulsion forces—to ensure stable formations under various
conditions, including different initial setups and failure rates. The method is tested using realistic
simulations with swarms of varying sizes (3, 5, 10, 15, 20, and 30 robots), with the optimized
configurations consistently achieving circular formations across multiple test scenarios. Additionally,
real E-Puck2 robots were used for validation, demonstrating the swarm's ability to self-organize and
maintain stability despite robot failures.

Optimization Approach and Methodology

In this study, we present an innovative method for the self-organization of autonomous robot
swarms, where the robots' movements are solely determined by their relative positions to each other.
These positions are measured through range and bearing data, which is obtained using their respective
radio beacons. This approach eliminates the need for central control or global positioning systems,
allowing the robots to coordinate efficiently without requiring extensive infrastructure.

To enhance the swarm’s ability to maintain robust formations under a variety of conditions,
we introduce an optimization strategy based on an evolutionary algorithm. The goal is to determine
the ideal parameters for the swarm, including the speed of movement and the forces of attraction and
repulsion between robots. These parameters are crucial for ensuring that the swarm can adapt to
different initial configurations, environmental conditions, and potential robot failures, while still
achieving stable and predictable formations.

The evolutionary algorithm is designed to explore the search space and identify the best values
for these parameters. By evaluating the fitness of different swarm configurations, the algorithm fine-
tunes the system to achieve the desired formation in the most efficient way possible. This method
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ensures that the swarm can operate effectively even in the presence of uncertainties or disturbances,
such as changes in the number of robots, their initial positions, or unexpected failures.

In essence, our approach provides a scalable and adaptive solution for organizing autonomous
robots into stable formations, while maintaining flexibility and resilience. The optimization process
ensures that the swarm can function optimally under a wide range of conditions, making it a highly
effective strategy for applications that require dynamic coordination, such as space exploration or
security operations.

In this research, we introduce an innovative method for the self-organization of autonomous
robot swarms, where the movement of each robot is determined solely by its relative position in the
swarm. This relative position is derived from range and bearing information obtained through their
respective radio beacons. The robots do not rely on an external control system or central coordination.
Instead, their movements are based on local interactions with neighboring robots, allowing the swarm
to collectively achieve the desired formation.

To further enhance the swarm's performance, we propose an optimization approach that uses
an evolutionary algorithm to calculate the optimal parameters necessary for maintaining robust
formations. These parameters include factors such as the robots' speed and the attraction/repulsion
forces between them. The goal is to find the most effective configuration that ensures the stability of
the swarm’s formation, even under varying initial conditions and in the presence of potential failures.
By optimizing these parameters, the swarm can adapt to different scenarios, maintaining its structure
and performance despite challenges such as robot malfunction or changes in the swarm size.

This approach addresses the complexity of managing autonomous robot swarms, where
factors like the number of robots, the starting conditions, and the potential for failure introduce
significant challenges. The proposed method aims to overcome these difficulties by providing a
solution that is both scalable and resilient. Through the optimization of swarm parameters, it is
possible to create stable and adaptable formations, even in dynamic environments where the robots
must rely on local information and interactions.

Unlike traditional methods that rely on centralized control, our approach allows each robot to
adjust its movement based solely on its relative position, which is determined through range and
bearing measurements obtained from radio beacons. The robots do not need to communicate with one
another directly or rely on complex algorithms; instead, they use simple local information to
coordinate their actions.

To ensure the formation remains stable and robust, we employ an evolutionary algorithm to
optimize key swarm parameters. These include the speed of each robot as well as the attraction and
repulsion forces between them. The goal is to maintain a stable, organized swarm that can adapt to
varying initial conditions and account for potential robot failures. This is particularly important as the
swarm must be resilient, even when some robots malfunction or become disconnected from the rest.

We tested this approach through a series of experiments that simulated six different scenarios,
with varying numbers of robots ranging from three to thirty. In total, 420 scenarios were run, and the
results were consistently successful. In every case, the swarm achieved the desired circular formation,
demonstrating the effectiveness and stability of the approach.

Finally, to validate the method in a real-world environment, we used physical robots,
specifically the E-Puck2 models, to conduct further experiments. These real-world tests confirmed
that the swarm was capable of self-organizing around a central point of interest. Additionally, the
swarm showed resilience to robot failure, as it continued to maintain its formation even when
individual robots failed, further proving the robustness of our approach.

In this section, we present a novel approach for optimizing the behavior of autonomous robot
swarms, focusing on their self-organization capabilities. The key innovation lies in how the robots
move: rather than relying on external commands or predefined paths, each robot’s movement is based
purely on its relative position to other robots in the swarm. This positional information is derived
from the range and bearing measurements, which are obtained through radio beacons. These relative
measurements allow the robots to coordinate their actions without needing a central controller,
mimicking natural swarming behaviors.
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To fine-tune the swarm's movement dynamics, we apply an optimization technique grounded
in evolutionary algorithms. This approach helps determine the ideal parameters for the swarm, such
as the speed of the robots and the forces of attraction and repulsion that dictate their interactions. By
optimizing these parameters, we aim to ensure the swarm can form and maintain stable and robust
formations, even in the face of changing initial conditions and potential robot failures.

The effectiveness of this method was tested through a series of realistic simulations. These
simulations featured various swarm sizes, ranging from three to thirty robots, across six distinct case
studies. Each scenario aimed to challenge the swarm’s ability to form stable circular formations under
different conditions. The results were promising: the optimized configurations consistently enabled
the swarm to achieve the desired formation in 420 test cases. The success of these simulations
demonstrated that the proposed method is resilient and effective, capable of achieving robust
performance even when faced with varied starting conditions.

Lastly, the research was extended to real-world testing using E-Puck2 robots, which were used
to physically validate the swarm’s ability to self-organize. In these experiments, the robots
successfully formed stable circular formations around a central point of interest. Furthermore, the
swarm demonstrated impressive resilience, maintaining its formation even when individual robots
failed, confirming the robustness and reliability of the proposed self-organizing system.

Conclusion.

To ensure that the swarm achieves robust formations, we employ an optimization strategy
based on an evolutionary algorithm. This algorithm is used to calculate key parameters for the swarm,
such as speed and the forces of attraction and repulsion between the robots. By optimizing these
parameters, the swarm can maintain stable and efficient formations even when faced with varying
initial conditions or failure rates.

We tested this method through simulations designed to reflect real-world scenarios. These
simulations involved six different case studies, with the swarm size ranging from three to thirty
robots. The results from the simulations were promising, with the optimized configurations
consistently achieving stable circular formations across all 420 test scenarios. This success
demonstrated the robustness of our approach under various conditions.

Finally, we validated our method through practical experiments using real E-Puck2 robots.
The physical tests confirmed that the swarm could effectively self-organize around a central point of
interest, even when individual robots experienced failures. In every trial, the swarm was able to
maintain the desired circular formation, further supporting the reliability and resilience of the
proposed method.
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DEEP LEARNING FOR EX-TRATERRESTRIAL ROCK SEGMENTATION

Abstract: Bringing autonomy to edge devices is a crucial step in advancing space exploration. Among the many
tasks that autonomous vehicles can perform, detecting and segmenting rocks in onboard images of extraterrestrial
landscapes is pivotal for enabling safe navigation and avoiding collisions. To address this challenge, we propose an end-
to-end pipeline designed to develop and validate resource-efficient machine learning techniques tailored to this task,
offering significant flexibility. Deploying such models on edge devices involves numerous practical challenges, including
achieving memory and computational efficiency and ensuring robustness under varying image quality conditions. These
critical aspects are often neglected during the development of deep learning-based onboard systems. We demonstrate
that these considerations should be integral to the deployment process. Our extensive experimental analysis across
multiple benchmark datasets highlights the functional and non-functional capabilities of the models, both in full-precision
and in compressed formats via quantization, the latter achieving similar segmentation accuracy while reducing model
size by approximately 11 times. Furthermore, we illustrate that synthesized images can be effectively used to evaluate the
robustness of deep learning models under conditions mimicking onboard acquisition scenarios, where degraded image
quality can negatively impact the performance of models trained on clean, high-quality data.

Keywords: autonomy, edge devices, space exploration, rock segmentation, machine learning, robustness,
quantization, image quality

Exploration of space presents humanity with extraordinary challenges. The harshness of
extraterrestrial environments—marked by cosmic radiation, extreme temperatures, and the absence
of breathable air—necessitates the development of highly specialized vehicles like rovers. These
rovers are designed not just to survive but to perform a variety of critical tasks, such as terrain
analysis, collecting samples, testing mission equipment, and transmitting invaluable data back to
Earth.

However, the vast distances of space introduce a unique constraint: the time delay in radio
signal transmission makes real-time remote control impossible. As a result, these machines require a
significant degree of autonomy. While current rovers depend partially on commands from Earth,
transitioning to full autonomy promises to revolutionize their efficiency and effectiveness in fulfilling
mission objectives. Autonomous navigation, hazard detection, and power management are among the
essential capabilities that would enable rovers to adapt seamlessly to their environment.

Despite their potential, designing these systems for space exploration involves overcoming
stringent technical challenges. The onboard computers must operate under severe hardware
constraints, balancing limited processing power with optimal performance. To navigate these
limitations, advanced machine learning techniques have become indispensable. Unlike traditional
algorithms, machine learning models excel in capturing complex relationships within data, providing
a robust foundation for autonomous decision-making under uncertain conditions.

This work focuses on an essential aspect of rover autonomy: the detection and segmentation
of rocks from onboard images. This capability not only aids in collision avoidance but also facilitates
path planning and other critical functions. Leveraging recent advances in deep learning, we present
an innovative end-to-end pipeline tailored for resource-constrained edge devices. By addressing both
the functional and non-functional aspects of deploying these models in extraterrestrial conditions, we
aim to bridge the gap between theoretical advancements and practical implementation.

The integration of deep learning models into the hardware of rovers poses a series of unique
challenges. These models must not only provide accurate segmentation of rocks but also operate
efficiently within the severe computational and memory limitations of onboard devices. Achieving
this balance requires innovative solutions that optimize the size and performance of the models
without compromising their accuracy. To address these challenges, we introduce a systematic
approach that combines state-of-the-art machine learning techniques with advanced resource
optimization strategies.
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A critical aspect of our approach involves tailoring the models to the specific conditions of
extraterrestrial environments. Images captured by rover cameras are often affected by noise, varying
lighting conditions, and other factors that degrade their quality. Traditional models trained on clean,
high-resolution datasets may falter under such conditions. To ensure robustness, our pipeline
incorporates data-level simulations that mimic these real-world acquisition scenarios. By introducing
controlled noise, blur, and exposure variations during the training process, we enhance the ability of
our models to generalize across diverse environmental conditions.

In addition to ensuring robustness, we focus on compactness through post-training
quantization. This process reduces the size of the models significantly—often by an order of
magnitude—without a noticeable drop in performance. The resulting models are not only suitable for
deployment on memory-constrained devices but also exhibit faster inference times, which is crucial
for real-time applications like navigation and hazard avoidance.

Our extensive experimental evaluation spans multiple benchmark datasets, including both
synthetic and real-world images of extraterrestrial landscapes. These datasets capture the diversity of
conditions that rovers might encounter, from the barren expanses of the Moon to the rugged terrains
of Mars. By testing our models under a variety of scenarios, we demonstrate their adaptability,
precision, and efficiency. The results confirm that our pipeline offers a viable solution for integrating
deep learning-powered rock segmentation into the operational framework of space exploration
vehicles.

To promote transparency and reproducibility, we have made our entire implementation
publicly available. This allows other researchers to build upon our work, adapt our methods to
different applications, and further advance the field of autonomous systems for space exploration. As
we look to the future, we envision this pipeline serving as a foundational tool not only for rock
segmentation but also for a range of other onboard image analysis tasks.

In the broader context of space exploration, the implications of deploying such compact and
robust machine learning models are profound. As missions extend to more distant celestial bodies,
the autonomy of exploration vehicles will become increasingly critical. The ability to process data
onboard eliminates the dependency on continuous communication with ground control, significantly
reducing delays and enabling real-time decision-making. For example, a rover equipped with an
efficient segmentation model can identify and navigate around obstacles autonomously, ensuring
uninterrupted progress even in the absence of direct oversight.

The flexibility of our proposed pipeline extends beyond rock segmentation. By design, it
accommodates a variety of image analysis tasks, from identifying geological features to detecting
potential scientific interest points. The modular structure allows researchers to integrate their
preferred deep learning architectures, optimize them for edge devices, and test their robustness under
simulated extraterrestrial conditions. This versatility ensures that the pipeline can evolve alongside
advancements in both machine learning and rover technology.

One of the standout contributions of our work is the systematic quantification of both
functional and non-functional capabilities of the models. Metrics such as Dice similarity, inference
time, and memory footprint provide a comprehensive view of model performance, ensuring that the
selected algorithms meet the stringent requirements of onboard deployment. The inclusion of non-
functional metrics is especially critical in resource-constrained environments, where trade-offs
between accuracy and efficiency must be carefully managed.

Our results highlight the significant potential of post-training quantization as a compression
technique. Models that underwent this process maintained segmentation accuracy comparable to their
full-precision counterparts while achieving a reduction in size by a factor of 11. This reduction not
only facilitates deployment on edge devices but also opens up possibilities for multitasking, where
multiple models can operate simultaneously without overwhelming system resources.

Looking ahead, the deployment of these models in real-world missions will require further
refinements. Hardware-in-the-loop testing, where algorithms are evaluated on actual rover systems
or high-fidelity simulators, will be a crucial step. Additionally, integrating these models with other
subsystems, such as navigation and power management, will ensure a cohesive and efficient
operational framework.
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The insights gained from this study provide a roadmap for future developments in autonomous
systems for space exploration. By addressing the dual challenges of robustness and efficiency, our
work paves the way for more ambitious missions that push the boundaries of what is possible in
remote and hostile environments. As exploration vehicles become increasingly intelligent and
capable, the dream of unlocking the mysteries of distant worlds edges closer to reality.

The outcomes of this study also underscore the importance of developing standardized
evaluation frameworks for onboard machine learning systems. The lack of uniform benchmarks for
comparing functional and non-functional capabilities of such models often leads to fragmented
progress. By providing a comprehensive set of evaluation criteria and ensuring reproducibility
through publicly accessible implementations, this work contributes to the establishment of best
practices in the field. This standardization is vital not only for advancing the current state of the art
but also for fostering collaboration across interdisciplinary teams involved in space exploration.

Moreover, the insights gained from simulating various image acquisition conditions point to
the need for resilient model designs. Real-world data from extraterrestrial environments are inherently
noisy and often deviate from the ideal conditions under which most machine learning models are
trained. The simulation pipeline developed in this study highlights the potential of synthetic data to
enhance model robustness. By incorporating noise, blur, and varying exposure levels during training,
models can be made more adaptable to the unpredictable nature of onboard imaging conditions. This
approach could also be extended to other domains where data acquisition is constrained, such as
underwater exploration or disaster response scenarios.

Another significant avenue for future research involves integrating multitask learning into the
proposed pipeline. While this study focuses on rock segmentation, many tasks in space exploration,
such as object detection, terrain classification, and hazard assessment, share underlying features. A
unified model capable of performing multiple tasks efficiently could further optimize resource
utilization onboard edge devices. Such a development would align with the overarching goals of
reducing mission costs and maximizing scientific output.

From a hardware perspective, the continued evolution of edge computing devices will play a
pivotal role in expanding the capabilities of onboard systems. Advances in processing power, memory
capacity, and energy efficiency will allow more complex models to be deployed without
compromising other critical functions. The proposed pipeline is designed to remain adaptable to these
advancements, ensuring its relevance in future mission architectures.

Additionally, the lessons learned from this study could inform the design of next-generation
space exploration vehicles. For instance, optimizing the placement and calibration of onboard sensors
and cameras to complement the strengths of machine learning models could enhance the overall
effectiveness of the system. Collaborative efforts between hardware and software teams will be
essential to achieving such seamless integration.

Finally, the broader implications of this work extend to the development of autonomous
systems in general. The principles of efficiency, robustness, and adaptability that underpin the
proposed pipeline are applicable to a wide range of applications beyond space exploration. Industries
such as autonomous driving, precision agriculture, and industrial automation could benefit from
adopting similar strategies for deploying machine learning models in constrained environments.

In conclusion, this study demonstrates that through thoughtful design and rigorous evaluation,
it is possible to bridge the gap between theoretical advancements in machine learning and their
practical application in extreme conditions. By addressing the unique challenges of space exploration,
this work not only advances the field of autonomous systems but also inspires new possibilities for
innovation in related domains. As we continue to explore the cosmos, the tools and methodologies
developed here will undoubtedly play a crucial role in shaping the future of intelligent exploration
systems.
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GAUSSIAN PROCESSES FOR PREDICTING PRODUCT QUALITY IN
MANUFACTURING.

Abstract: This paper presents an Al-driven solution designed to predict product quality in continuous
manufacturing processes. The solution integrates process parameters and product quality data collected from the
production line. The research is motivated by real-world challenges, focusing on an application within a key industry in
the UK. It outlines five essential criteria that any Al solution should ideally meet for continuous manufacturing:
scalability, modularity, reliable out-of-sample performance, uncertainty quantification, and resilience to
unrepresentative data. The paper examines the limitations of current Al methods based on these criteria and introduces
a novel solution. This approach utilizes a generalized product-of-experts Gaussian process, with a noise model built using
a Dirichlet process. The model's ability to meet the outlined criteria and its effectiveness in the case study within the
foundation industry are thoroughly demonstrated.

Keywords: ai-driven solution, product quality, continuous manufacturing, process parameters, production line,
scalability, modularity, out-of-sample performance

Introduction.

This paper focuses on a foundation-industry application where a product is produced using a
continuous manufacturing process. In this context, data on various process parameters is collected at
multiple stages of the production line, while product quality, specifically the fault density (the number
of faults per unit area), is measured at the end of the line. The objective of this research is to develop
an Al-based model, also referred to as a data-driven or machine-learned model, that can predict the
product quality based on the process parameters. Subsequently, this model can be utilized to optimize
the manufacturing process.

Drawing from previous studies [1-4] and the authors' extensive experience in developing Al
solutions for continuous manufacturing, several key criteria must be considered during the initial
stages of model development. These criteria are:

1. Scalability: As a continuous manufacturing process generates an ever-increasing amount of
data, the Al model must be capable of handling large datasets.

2. Modularity: Given that data evolves over time—affected by changes in operations or product
variations—older data may become less relevant. The model should be able to easily exclude
or update outdated data without disrupting its overall functionality.

3. Stable out-of-data performance: The model must be able to handle situations where the data
falls outside the range it was trained on. This could occur if a sensor malfunctions or if a new
product is introduced, and the model should indicate when it is inappropriate to rely on its
predictions.

4. Uncertainty quantification: The model should provide a measure of confidence in its
predictions, an essential feature when using Al for decision-making.

5. Robustness to unrepresentative data: It is crucial that the data used to train the model
reflects the true nature of the process. Data anomalies caused by external factors such as
equipment maintenance or unmeasured raw material changes must be identified and excluded
from training.

The paper further explores how existing Al methods measure up against these five criteria and
identifies their shortcomings. The proposed solution utilizes a generalized Gaussian process (GP)
model, enhanced with a Dirichlet process to account for noise. The method's performance in meeting
these criteria, as demonstrated through a case study in the foundation industry, is detailed and
analyzed.

focuses on Gaussian Processes (GPs), an influential machine learning technique employed in

both classification and regression problems, with the paper concentrating on its application in
regression.
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In GP regression, a probabilistic method is used to infer an underlying function based on
observed data. A key strength of GPs is their ability to quantify uncertainty in predictions. Unlike
traditional methods that infer specific parameters of a function, GPs derive samples from a
distribution over functions, making them non-parametric. This means they do not rely on a particular
family of regressors, allowing them to flexibly model complex relationships in data. This
characteristic of GPs has led to their successful application across various fields such as traffic flow,
engine modeling, structural dynamics, and robotics.

Standard GPs operate under the assumption that training data is contaminated by noise
following a Gaussian distribution. However, as highlighted by several studies, this assumption often
does not hold in real-world scenarios. For example, when data contains noise from non-Gaussian
distributions, standard GPs may produce inaccurate predictions. Several approaches have been
developed to address this, such as using a student-t likelihood to ignore outliers. These modifications
allow GPs to handle non-Gaussian noise, though they come with challenges in terms of computational
tractability. Techniques like Markov Chain Monte Carlo (MCMC), variational methods, and Laplace
approximations have been introduced to estimate model parameters in these cases. Models designed
to handle outliers are sometimes referred to as "robust GPs," which incorporate these advanced
likelihood functions to mitigate the influence of noisy data.

The standard GP regression typically assumes Gaussian noise, but this assumption was found
to be inaccurate for predicting product quality in the case study of interest. In this context, the goal is
to predict fault density in products manufactured through a continuous process, and the noise
corrupting the data is not Gaussian.

To overcome this, the authors introduce a Gaussian Mixture Model (GMM) for the
observations. This model assumes that the noise corrupting each observation comes from one of
several Gaussian distributions. The model uses 1-of-K allocation variables to associate each
observation with one Gaussian distribution from the mixture. This allows the noise characteristics to
vary depending on the source of the data, making it more flexible and better suited to the real-world
manufacturing scenario.

In this approach, the allocation variables are treated as latent variables and are integrated into
the model using a Bayesian framework. The model includes priors for these allocation variables,
which are updated iteratively as new data is observed. The resulting observation model is a mixture
of Gaussian distributions centered around the latent function, which is the actual output of the
manufacturing process being predicted (fault density).

This modified approach preserves the closed-form solutions associated with standard GP
models while allowing for non-Gaussian noise. The mixture of Gaussians helps to capture different
noise processes that affect the product quality measurements, such as sensor errors or external
disturbances, which would not be properly handled by a standard GP with Gaussian noise.

Through the Dirichlet Process (DP), the authors are able to model the number of mixture
components in a non-parametric way. This allows the model to automatically adjust the number of
Gaussian components based on the data, without having to pre-define this number. This flexibility is
essential for industrial applications where the noise characteristics may change over time.

In essence, this section outlines how a more sophisticated, non-Gaussian noise model can be
integrated into a Gaussian Process framework to improve prediction accuracy in manufacturing
processes. This method improves upon the standard GP model by introducing a mixture of Gaussians
and using a Dirichlet Process to determine the noise model dynamically.

The paper describes the implementation of the proposed robust Gaussian Process (GP) model,
which aims to predict product quality in a continuous manufacturing process by incorporating a
mixture of Gaussian distributions for noise modeling. The process involves two main steps: clustering
and regression.

Clustering Step: The first step involves clustering the residuals using a Dirichlet Process (DP)
mixture of Gaussian distributions. A DP is a stochastic process that helps define a distribution over
an infinite number of potential components, which is essential for clustering data points. The
clustering is based on a mixture of Gaussian components, where each observation is associated with
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a specific Gaussian based on its noise characteristics. The clustering is done in a Bayesian framework,
where priors are set on the allocation variables (which determine the association of each observation
to a particular Gaussian) and the variance parameters of the Gaussians themselves.

Regression Step: After clustering, the regression step estimates the latent function using the
GP approach. Only the observations that are identified as being corrupted by the least noisy Gaussian
are used for this step. This ensures that the regression step is not influenced by outliers or noisy data,
leading to more accurate predictions. The GP regression process uses the standard formulation to
estimate the parameters that best fit the data, providing predictions of the underlying product quality.

For large-scale applications, the proposed model uses a Product-of-Experts (PoE) approach to
scale the computations. Each expert model is trained on a subset of the data, and the predictions from
each expert are aggregated to form the final predictive model. This approach allows the model to
handle larger datasets without running into memory issues and ensures that the computational cost
remains manageable.

Conclusions

In summary, the model combines the clustering of noisy data using a Dirichlet Process with
GP regression, making it scalable, robust, and modular. This allows it to effectively predict product
quality in continuous manufacturing processes, addressing challenges like noise, data outliers, and
scalability with large datasets.

The comparison is based on synthetic data corrupted by noise sampled from a mixture of
Gaussian distributions. The synthetic dataset comprises 150 realizations of a function, and the
models’ predictive accuracy is evaluated by calculating the Root Mean Squared Error (RMSE).

The experiment uses 150 data points where noise follows a Gaussian mixture model with three
components, each having different standard deviations and proportionalities. The RMSE results from
both Approach 1 and Approach 2 show that the DPGP outperforms both the standard GP and RGP
models. Specifically, the DPGP achieves the lowest RMSE, demonstrating its superior ability to
handle noise and outliers. The standard GP, in contrast, struggles with noisy data, leading to higher
RMSE values.

The comparison between the models also includes visual analysis, where the DPGP model's
clustering outcomes and predictive means are shown. The DPGP correctly identifies noise
components and does not overfit the data, unlike the standard GP, which overfits by following outlier
data points. The results suggest that the DPGP is not only more robust to outliers but also provides
more accurate predictions for unseen data.

In conclusion, the experiment illustrates the DPGP's strong performance, particularly in
environments with noisy data, while also showcasing its scalability and ability to integrate new data
seamlessly. This comparison highlights the advantages of the DPGP approach in predictive tasks
involving complex data, such as in continuous manufacturing processes.
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FAST, LIGHTWEIGHT DEEP LEARNING PIPELINE FOR UAV LANDING SUPPORT

Abstract: Despite significant advancements in aerial robotics, achieving precise and autonomous landing in
various environments remains a complex challenge. Several factors, such as terrain characteristics, weather conditions,
and obstacles, influence this process. This paper introduces a deep learning-based image processing pipeline that
accelerates the detection of landing pads and the estimation of the UAV's relative pose. Additionally, the system enhances
safety and reliability by incorporating human presence detection and error estimation for both the identification of
landing targets and pose computation. Human detection and landing pad localization are achieved through a
segmentation-based approach, which estimates the probability of presence. The landing pad's keypoints are then
identified using a regression algorithm that not only determines the coordinates but also provides an uncertainty measure
for each landing pad feature. To address these tasks, a set of lightweight neural network models was carefully selected
and tested. The paper presents performance metrics for each component of the system as well as for the entire processing
pipeline. These evaluations, conducted on embedded UAV hardware, demonstrate that the method can deliver precise,
low-latency feedback, ensuring safe landing operations.
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Introduction.

The process of autonomous landing for unmanned aerial vehicles (UAVS) remains a
significant challenge, even amidst the rapid advancements in aerial robotics. Several factors
contribute to the complexity of this task, including the terrain's characteristics, varying weather
conditions, and the potential presence of obstacles in the landing zone. This paper outlines a deep
learning-based image processing pipeline designed to enhance the accuracy of detecting landing pads
and estimating the UAV's relative pose with respect to these pads. Furthermore, the system
incorporates mechanisms for increasing safety and reliability, such as detecting the presence of
humans and estimating potential errors in landing target detection and pose computation.

The system utilizes a segmentation approach to estimate the likelihood of human presence and
the position of the landing pad. This information is followed by a regression algorithm that identifies
key points on the landing pad, determining not only their coordinates but also the associated
uncertainty of the detected key points. To achieve these tasks, a set of lightweight neural network
models was chosen and thoroughly tested. Performance and accuracy measurements of the system's
components are provided, showing that the system can deliver precise, real-time feedback, ensuring
safe landing operations.

Related Work

The challenges in autonomous UAV landing can generally be categorized into two
approaches: landing on natural surfaces and landing on prepared landing sites, each presenting its
own set of difficulties. Landing on natural, unmodified terrains typically involves finding a flat and
stable area of appropriate size, a task that often relies on aggregated measurements converted into a
cost function. However, this approach tends to be more complex than landing on predefined, feature-
rich artificial surfaces. As a result, natural surface landings are not typically considered for high-
precision operations, such as landing on moving platforms. Therefore, the system presented in this
work focuses on landing on an artificial, helipad-like surface, where the challenges are more
manageable due to predefined markings.

Vision-based methods for landing on platforms with defined shapes and textures commonly
utilize keypoints located on the surface to compute the relative pose between the UAV and the landing
pad. The use of a sparse set of keypoints for pose estimation has been widely recognized as a reliable
technique in this context. For instance, in the early works by [1], elementary image processing
operations like image binarization, segmentation, and feature detection were used to identify
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keypoints on a template marker. Though simple by today's standards, this approach laid the
foundation for more advanced techniques.

As the field evolved, more sophisticated vision-based systems were developed. These systems
often relied on hand-designed patterns or general-purpose markers such as QR codes, ArUco codes,
or AprilTags for precise pose estimation. Some methods, like those proposed by [2] or [3], used shape
analysis and the fitting of ellipses to landing pad templates, in combination with IMU data, to estimate
the UAV's relative pose. Other systems, such as [4], employed patterns involving concentric circles.
These hand-designed markers could also incorporate color information, like the marker described by
[5], which used color segmentation and Hu’s moments for reliable operation in cluttered
environments.

Additionally, the application of active markers, which emit infrared radiation detected by
thermal cameras or infrared sensors, provides another layer of precision. While these methods offer
advantages in terms of accuracy, they require additional power supplies and specialized sensors,
which may not always be feasible in UAV applications.

The rapid development of deep learning has further advanced vision-based landing systems.
Modern approaches, such as the ones used by [6], incorporate convolutional neural networks (CNNSs)
for detecting landing pads. These systems enhance detection accuracy and can handle situations
where the landing pad is partially obstructed, although they are often computationally intensive and
do not compute the relative pose directly.

Lastly, recent work has focused on real-time systems that use deep neural networks for person
detection and safe landing zone estimation. Overall, while many of these methods offer solutions for
specific aspects of the landing process, they often lack full integration or fail to meet the high
precision and safety requirements needed for autonomous UAV landings. This paper proposes a more
holistic approach that not only detects the landing pad but also ensures the safety of the landing
environment, incorporating real-time feedback to adjust landing maneuvers dynamically.

The complete pipeline consists of multiple components: a camera, image processing
operators, and a control algorithm for the UAV's platform. The camera captures images, which are
then processed by a set of lightweight neural networks designed to handle complex operations. These
networks detect and analyze objects like the landing pad and human presence, providing real-time
feedback.

The segmentation model processes the input image and generates two probability masks, one
for detecting human presence and another for the landing pad. This segmentation is followed by
contour extraction to identify regions of interest. When human presence is detected within the
threshold distance from the landing pad, the landing process is halted for safety reasons. If the landing
pad is detected, the algorithm identifies the largest region of interest (ROI) and applies a keypoint
detection model. This model estimates the locations of keypoints on the landing pad, as well as the
coordinates' variance and confidence level.

The keypoint regression step then uses the keypoint information to calculate the relative pose
of the UAV to the landing pad. This is done using a 3D model of the landing pad and a perspective-
N-point solver. The resulting pose is translated into the global coordinate system, allowing the UAV
to adjust its position accurately.

This methodology is designed to be implemented on embedded edge Al devices, optimizing
the system's computational performance while ensuring real-time operation for precise landing, even
under challenging conditions. The choice of neural networks and image processing techniques is
based on their ability to operate efficiently on resource-constrained hardware. The use of lightweight
models allows for high-throughput, real-time processing suitable for UAV applications.

We describe the hardware setup used for benchmarking the algorithm and introduce the
external simulation environment via Robot Operating System (ROS). This external simulation
enables early-stage algorithm testing in a virtual environment while using target hardware, following
the hardware-in-the-loop approach. This allows both synthetic and real-world data to be fed to the
same hardware controller.

4.1 Flying Platform
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The research was conducted on a Holybro X500 quadcopter, a commercially available flying
platform selected for its open design and modification flexibility. This platform is powered by the
Pixhawk 4 autopilot flight controller running PX4 firmware version 1.11.3. The system is open-
source and well-documented, allowing easy adaptation for various applications. The platform's
carbon frame, which weighs only 1000 g without batteries, supports four 2216 KV880 motors and 10
x 4.5 propellers, powered by a 5000 mAh Li-Po 4s battery. With a maximum take-off weight of 2000
g, the platform can carry additional payloads, such as cameras and onboard computers, while
maintaining a flight endurance of over 10 minutes.

4.2 Hardware Description

To ensure the onboard processing capabilities for the UAV, we chose small, lightweight
devices with low power consumption. The goal was to perform neural network inference on edge Al
devices with minimal energy requirements. We evaluated the following embedded Al devices:

e Nvidia Jetson Nano: This device is the lowest-performance model in the Jetson family,
delivering 472 GFLOPs while consuming just 10 watts. It features a quad-core Cortex A57

ARM processor and a Maxwell GPU with 128 CUDA cores, weighing only 140 g.

o Nvidia Jetson Xavier NX: A more powerful device designed for embedded applications, it
includes a six-core CPU, 384 CUDA cores, and 64 tensor cores. It also contains two Nvidia

Deep Learning Accelerator (NVDLA) engines for deep learning tasks, with a weight of 172

g.

For the vision sensor, we used the Luxonis Oak-D-Lite, a USB camera with a color sensor
that provides full-HD frames and a 81-degree field of view. This camera was chosen for its low cost
and versatility, and although it also captures depth images via a stereo pair, the depth information was
not used in these experiments.

4.3 Drone Simulation and Off-Board Control

Recent advancements in flight controllers, such as PX4, allow for control via external signals.
This is made possible by integrating a companion computer on board, which provides top-level
control commands with a minimum frequency of 2 Hz. To override the autopilot control, the flight
controller must be in off-board mode. Communication between the systems is established through the
MAVROS node, which translates ROS topics into MAVLink-compatible messages.

Off-board control of UAVs requires rigorous testing to avoid dangerous situations that could
cause the vehicle to crash. To ensure safety, we used both software-in-the-loop (SITL) simulations
with PX4 and real-world hardware for testing. The simulation runs on a personal computer, while
communication with the embedded device is handled over a local network, enabling the algorithms
to be tested directly on the target hardware without additional delays.

Finally, the entire inference pipeline was evaluated, taking into account both speed and
accuracy. For segmentation, the best performance was achieved using the DeeplLabV3Plus +
ResNet10t combination, while for keypoint regression, the MobileNetV3_100 and LCNet_050
models were selected due to their higher processing speeds. Aggregating the results, the system
achieved 12.86 = 0.11 FPS on the Jetson Nano and 83.38 &+ 6.96 FPS on the Jetson Xavier NX. The
best speed-performance combination was found with DeepLabV3Plus + LCNet 050 for
segmentation and MobileNetV3 100 for keypoint regression, which resulted in 19.33 + 0.51 FPS for
the Jetson Nano and 93.64 + 1.22 FPS for the Xavier NX.

It is important to note that the vision pipeline must meet specific computational requirements
to work effectively. The use of deep learning necessitates that the UAV platform be equipped with
an embedded GPU to perform inference at the required speed, limiting its use to UAV platforms that
have the necessary space and power capacity to carry additional devices and their power supply.

Further experiments showed that the pipeline is capable of detecting the landing target and
keypoints even under challenging conditions, such as motion blur, scaling, perspective changes, and
poor lighting. The model's robustness was evaluated with data augmentation techniques like
perspective transformations, scaling, rotation, and the addition of noise. The results confirm that the
algorithm can handle these real-world conditions. Additionally, it can fill in missing keypoint data
caused by occlusions or damage to the landing pad, while also informing the system about the
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uncertainty in keypoint positions. This feature is crucial for making informed decisions about whether
or not to proceed with landing, contributing to a more cautious approach when necessary.

The authors present a deep neural network-based vision pipeline designed to offer precise
landing support for UAVs. This system enables real-time processing, delivering landing target
information, including positional and rotational data relative to the UAV's camera, ensuring precise
landings. The method is optimized to run efficiently on embedded GPU devices commonly used in
UAV platforms, processing up to 20 frames per second.

One of the key differences between this approach and others is the use of deep learning
algorithms to not only detect landing pads but also handle potential human presence in the landing
zone. Additionally, the system assesses the confidence in the detected keypoints' positions, which
further enhances landing safety. The method is resilient to environmental factors such as lighting
variations, scaling, and rotation, demonstrating robustness even when dealing with partial data or
occlusions, thanks to its advanced explainability techniques.

The relative pose estimation’s accuracy was evaluated using a high-precision external system,
confirming that the deep learning model can estimate landing pad keypoints with sufficient accuracy
for reliable landing. However, the system’s adaptability to various landing pads depends on their
visual characteristics, such as high contrast with the environment and the presence of at least four
distinct, non-collinear keypoints.

Future research will focus on refining this system for real-world UAVs, especially for landing
on moving platforms, which introduces additional challenges. The authors also intend to explore
optimization techniques to improve processing speed, such as hardware upgrades and neural network
optimization methods like quantization and pruning. This future work aims to ensure that the system
can handle even more complex landing scenarios.

REFERENCES

5. Sharp, C.S., Shakernia, O., Sastry, S.S., 2001. A vision system for landing an unmanned aerial vehicle. In:
Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No. 01CH37164),
Vol. 2. leee, pp. 1720-1727.

6. Zhang, G., Zhou, F., 2005. Position and orientation estimation method for landing of unmanned aerial vehicle
with two circle based computer vision. Acta Aeronaut. Astronaut. Sinica 26 (3), 344-348.

7. Yang, S., Scherer, S.A., Schauwecker, K., Zell, A., 2013a. Onboard monocular vision for landing of an MAV on
a landing site specified by a single reference image. In: 2013 International Conference on Unmanned Aircraft
Systems. (ICUAS), IEEE, pp. 318-325.

8. Lange, S., Sunderhauf, N., Protzel, P., 2009. A vision based onboard approach for landing and position control
of an autonomous multirotor UAV in GPS-denied environments. In: 2009 International Conference on Advanced
Robotics. IEEE, pp. 1-6.

9. Garcfa-Pulido, J., Pajares, G., Dormido, S., 2022. UAV landing platform recognition using cognitive
computation combining geometric analysis and computer vision techniques. Cogn. Comput. 1-21.

10. Lee, S., Jo, D., Kwon, Y., 2022a. Camera-based automatic landing of drones using artificial intelligence image
recognition. Int. J. Mech. Eng. Robotics Res. 11 (5), 357-364.

187



UDC 621.316.4:681.3.06:004.7

Federico Lombardo, Federico Pittino, Daniele Goldoni, Luca Selmi (University of Modena and
Reggio Emilia, Modena, Italy).

MACHINE LEARNING FOR NANOPARTICLE SIZING WITH BIOSENSOR ARRAYS

Abstract: Many technology applications still exist where Artificial Intelligence techniques, carefully tailored to
meet specific application requirements, can deliver significant improvements in hardware performance. One such area
is biosensing using innovative complementary-metal-oxide-semiconductor (CMOS) nanocapacitor arrays. These sensors
have the potential to function as advanced imaging platforms, but despite the progress in the field, there remains a
significant gap in the knowledge required to accurately and reliably interpret their responses to analytes. This study
harnesses the power of Machine Learning (ML) methods in computer vision to develop precise and robust models across
various operational conditions. By recognizing the parallels between multifrequency capacitance maps and multispectral
images, we identify the most suitable ML algorithms to predict the size of analytes detected by the nanoelectrode array
biosensor. As a key example, we focus on measuring the radius of dielectric spherical nanoparticles dispersed in deionized
water and phosphate-buffered saline. We compare the performance of large, well-established image-processing neural
networks to simpler, purpose-built models. Large training datasets are generated by combining precise finite element
simulations of sensor responses with experimental data. Remarkably, we achieve an excellent level of accuracy,
comparable to traditional sizing methods, when determining the size of nanoparticles that are similar in scale to the pixel
pitch of the array. The median size error remains below 15% across all scenarios when a small fraction of measured data
samples is added to the simulation-based training dataset.

Keywords: artificial intelligence, machine learning, biosensing, nanocapacitor arrays, capacitance maps,
multispectral images, nanopatrticles, simulation-based training

Introduction.

Machine Learning (ML) and Deep Learning (DL) techniques have revolutionized many fields,
including computer vision, speech recognition, natural language processing, and generative models.
However, their application in certain sectors is still in its early stages, despite the substantial potential
they hold. One such area is biosensing, particularly when it comes to accurate and reliable
measurements of biological objects suspended in liquid solutions, such as biomolecules and cells.
Although there have been some attempts to integrate ML into biosensing technologies, including
limited applications for biosensors, significant challenges remain. A primary obstacle is the lack of
extensive, high-quality datasets that can effectively cover the entire operational space of these
sensors. This scarcity of data hinders the ability to achieve the high accuracy and robustness that ML-
based systems typically promise.

One promising direction for improving the accuracy of conventional biosensors is to
incorporate ML-based data analysis. This approach has the potential to enhance both the precision of
measurements and the reliability of data interpretation. However, the presence of noise, variability,
and uncertainty in measurements complicates the process, often making accurate and cost-effective
data analysis difficult. Furthermore, accurate physics-based simulations, which could provide cleaner
and larger datasets for training, are still not widely available. Additionally, most biosensing platforms
operate with limited parallelism, further restricting the collection of large datasets across multiple
analytes. In recent years, complementary metal-oxide—semiconductor (CMOS) micro/nano-electrode
array systems have been developed to address some of these challenges. These systems offer various
advantages, such as miniaturization, high parallelism, and the ability to mitigate the spatial sensitivity
limits imposed by Debye screening. These biosensors can detect nano-scale objects (objects with
dimensions < 1 um) without requiring labels. As a result, CMOS-based nanoelectrode array
biosensors have gained attention for applications ranging from measuring microparticles and
nanoparticles to detecting pollutants in environmental monitoring.

While these systems show promise, they still require further optimization, particularly when
it comes to accurately estimating the size of nanoparticles at resolutions that match the pixel pitch of
the sensor arrays. This work explores how advanced ML methods, originally designed for computer
vision tasks, can be adapted for estimating nanoparticle sizes based on multi-frequency capacitance
data collected by nanoelectrode array biosensors.
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By leveraging the structural similarities between capacitance maps and multispectral images,
this study identifies suitable ML algorithms to predict the size of nanoparticles, specifically focusing
on spherical dielectric particles. The results suggest that machine learning methods, when
appropriately trained on simulations and real-world measurements, can achieve high accuracy in
nanoparticle sizing, even when the particle sizes approach the resolution limits of the sensor arrays.
This work paves the way for more accurate, cost-effective biosensing technologies capable of
monitoring and quantifying nanoparticles in complex environmental and biological systems.

1 Measurements: Experimental Setup, Procedure, and Data Preparation

The work utilizes a High Frequency Impedance Spectroscopy (HFIS) nano-electrode array
chip, which was designed and provided by NXP Semiconductors. This CMOS chip incorporates a
256%256 array of individually addressable nano-electrodes (NEs), each with a 90 nm radius and a
600 nm x 720 nm pitch, fabricated with 90 nm CMOS technology. The chip uses Charged-Based
Capacitance Measurement (CBCM) and ad hoc calibration procedures to measure capacitance within
a frequency range of 1-70 MHz (with potential extension to 500 MHz).

Capacitance images are generated by sequentially activating one row of electrodes at a time
while grounding the others, effectively creating a large counter electrode. The capacitance change
due to analyte arrival is measured by the difference in capacitance before and after the analyte's
interaction with the electrodes. Polystyrene (PS) nanoparticles of specific sizes (275 nm and 500 nm
nominal radii) suspended in MilliQ water and PBS were used for the measurements. The
nanoparticles were prepared using a combination of dynamic light scattering (DLS) and filtering to
ensure purity. The system was initialized, allowed to reach thermal equilibrium, and measurements
were conducted at 22°C.

Data preprocessing involved the identification of capacitance maps (7x7 electrodes) that
contained only a single nanoparticle. Noise reduction strategies were implemented to eliminate outlier
data and match experimental results with simulations. Specific steps were taken to calculate the mean
and standard deviation of capacitance from the outermost electrodes, and a noise model was
introduced to simulate realistic measurement conditions.

2 Numerical Simulations: Calculations and Data Preparation

Simulations of the nanoelectrode array response were conducted using the ENBIOS software,
which solves the Poisson—Boltzmann and Poisson-Drift-Diffusion equations to calculate capacitance
changes due to nanoparticles. Simulations were performed under two conditions: one with the particle
present and one without, across a matrix of electrodes surrounding the particle. For accurate
simulations, only the innermost 7x7 electrodes were considered.

Simulations were performed for the MilliQ environment using a constant frequency of 50
MHz, and for PBS using a frequency range of 2-70 MHz. The simulated data included various
particle sizes (ranging from 200 nm to 1500 nm) and positions, with an augmentation technique
involving flipping images to increase model robustness.

3 Radius Estimation Model Development

To estimate the particle radii, machine learning (ML) algorithms were applied to the
multifrequency capacitance maps, taking advantage of the similarity to regular images used in
computer vision. Several deep learning models, including MobileNet-V3Small, ResNet18, and
simpler convolutional neural networks (CNNSs), were developed and tested. Special emphasis was
placed on creating smaller models to prevent overfitting, due to limited training samples and the need
for low-memory, low-power applications in edge devices.

Two variants of the MobileNet architecture, Tiny MobileNet and SuperLite MobileNet, were
created with reduced parameters for optimal performance in this application. Additionally, CNN
architectures, such as the Two Blocks Network and Simplest Network, were designed for their
simplicity and effectiveness in nanoparticle sizing.

The models were trained using the Gaussian Negative Log-Likelihood loss function, which
allows the model to estimate both the mean and variance of the particle radius, aiding in uncertainty
quantification. The training was performed using the Adamax optimizer.

Results in MilliQ Environment:
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Training and Test on Simulated Samples Only

Initially, the ML models were trained using only simulated data. The training data set included
all nanoparticle radii except the 750 nm samples. White Gaussian noise, estimated from the
measurement data, was added to the simulation data to stabilize the results and reduce model
overfitting. The hyperparameters of the models were optimized on a validation set, and their
performance was tested on a separate test set of simulated particles with a radius of 500 nm.

The results, as depicted in the figures, reveal that models with fewer parameters, such as the
Simplest Net and Two Blocks Net, exhibited the best performance, achieving median errors below
10%. In contrast, larger models like MobileNet showed severe overfitting, which significantly
degraded their performance, thus excluding them from further analysis.

Test on Measurement Samples (Different Trainings)

Following the training on simulation data, the models were also tested using real measurement
samples of nanoparticles with radii of 275 nm and 500 nm. The training data included only a small
subset of measurements, and the models were evaluated based on how well they generalized to these
new samples. Notably, Tiny MoNet, which had performed poorly in previous stages, was excluded
from this part of the analysis.

Results demonstrated that, except for Tiny MoNet, all models successfully distinguished
between the two nanoparticle radii. The Simplest Net exhibited the lowest median error and the least
spread in its predictions. However, when a small number of measurement samples (10 per radius)
were included in the training data, performance did not significantly improve for most models, except
for the SuperLite MoNet, which showed enhanced accuracy. The lack of improvement was attributed
to the sensitivity of the measurements to uncontrolled variables, such as particle displacement and
alignment relative to the electrode, particularly for nanoparticles smaller than the electrode pitch.

Results in PBS Environment:

Training and Test on Simulated Samples Only

The same procedure as in MilliQ was applied to the PBS environment. The results confirmed
previous findings: models with fewer parameters, like Simplest Net and Two Blocks Net,
demonstrated superior accuracy, with median errors of only a few percent. SuperLite MoNet, on the
other hand, performed poorly, exhibiting a higher spread of errors, especially for the larger
nanoparticles (500 nm).

Test on Measurement Samples (Different Trainings)

The models were then tested on measurement data in PBS. Several adjustments were made in
the training process to account for the effects of salinity and multi-frequency data. The accuracy of
noise estimation was improved by only considering measurements from the 275 nm radius
nanoparticles. A data augmentation technique was applied, adding random Gaussian noise to the
ground truth values of the radius during training to improve model robustness.

The results from testing on the PBS measurement data showed a significant improvement
when a small subset of measurement samples was added to the training set. In particular, SuperLite
MoNet, which had performed poorly on the simulation-only training set, became the most accurate
model after incorporating measurement data.

Summary of Results:

In summary, the models trained on simulations with a small number of measurement samples
showed the best performance, providing reliable nanoparticle sizing even when the particle size was
close to the pixel pitch of the array. The Simplest Net and SuperLite MoNet models achieved the
highest accuracy, with median errors of less than 15% in all scenarios, including tests in both MilliQ
and PBS environments.

In contrast, relying solely on measurement data proved less effective, particularly for the
larger nanoparticles in PBS. The addition of simulated data greatly enhanced model performance by
increasing the diversity of the training set and providing more stable predictions. These results
underscore the potential of combining simulated data with real measurements for training robust
machine learning models, which is crucial for nanoparticle metrology using advanced biosensor
technologies. This study provides a significant contribution to enhancing the functionality of
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nanoelectrode array biosensors with the integration of optimized machine learning (ML) algorithms.
These algorithms are applied to the capacitance measurements of nanoparticles in liquid solutions,
specifically focusing on estimating their physical parameters, such as radius. The work exploits the
structural similarities between multi-frequency capacitance maps obtained from the sensors and
regular multi-spectral images. This approach enables the application of advanced ML techniques
traditionally used in computer vision. The case study centers around the estimation of nanoparticle
radii, a particularly challenging task due to the sub-micron size of the particles and the smaller
dimensions compared to the pixel pitch of the imaging system. The study utilizes simulated data as
an augmentation technique to improve model performance, enhancing the metrology of nanoparticles.
The primary findings of this research include the successful application of simplified versions of
state-of-the-art deep learning models originally developed for RGB image recognition. These models
have been tailored to operate with the specific characteristics of capacitance maps. Additionally, the
study demonstrates how machine learning can overcome some of the current limitations of
nanoparticle metrology, such as detecting and sizing particles in aqueous environments without the
need for complex and costly optical techniques. This is especially relevant in the context of
monitoring nanoplastics in water, where current methods are inadequate.

A crucial aspect of the methodology is the incorporation of simulated data samples to train
the ML models, which proves to be an effective strategy in enhancing the accuracy and robustness of
nanoparticle measurements. The models trained with this data achieve performance comparable to
traditional dynamic light scattering (DLS) methods, but with the added benefit of being able to
operate in a label-free, high-throughput manner. Overall, the research shows promising results,
indicating that nanoelectrode array biosensors, when coupled with optimized machine learning
models, can provide accurate, real-time measurements of nanoparticle characteristics, facilitating
future advancements in fields such as environmental monitoring and medical diagnostics.
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NEURAL NETWORK VERIFICATION IN CLOSED-LOOP SYSTEMS USING
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Abstract: Machine learning methods have been effectively applied to develop high-performance control
components for cyber-physical systems, where control dynamics arise from the integration of multiple subsystems.
However, these methods may not always provide the level of trustworthiness needed for safe operation in critical
environments. This paper presents an innovative approach that combines interval arithmetic with theorem-proving
techniques to verify safety properties in closed-loop systems incorporating neural network components. We apply this
approach to a model-predictive controller for autonomous driving, comparing the verification results of the neural
network with those obtained using other existing tools. Our findings reveal that open-loop verification of neural networks
using interval arithmetic can outperform current methods, achieving property proofs with reduced time overhead.
Additionally, we demonstrate how the combination of these two techniques allows for constructing a formal model of the
network in higher-order logic, applied to the controlled closed-loop system.
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Introduction.

In recent years, machine learning has played a crucial role in developing high-performance
control systems for cyber-physical systems (CPS). These systems, which combine computational
algorithms and physical components, often operate in a closed-loop setup where control dynamics
emerge from multiple interacting subsystems. While machine learning approaches, especially neural
networks, have significantly improved the capabilities of CPS in fields like autonomous vehicles,
smart manufacturing, and medical applications, they come with challenges. One of the key concerns
is their trustworthiness in safety-critical environments, where any malfunction could have severe
consequences.

To address these concerns, we propose combining two verification techniques: interval
arithmetic and formal verification methods. This approach helps assess the safety properties of
closed-loop systems that use neural network controllers. Specifically, interval arithmetic is used to
bound the possible outputs of the neural network, ensuring that the system behaves within safe limits
under all possible inputs. Formal verification, on the other hand, uses logical proofs to guarantee that
the system meets safety requirements, offering a higher level of assurance.

We demonstrate the effectiveness of this combined approach by applying it to a model-
predictive controller for autonomous driving. Our results show that this method can verify neural
network properties more efficiently than existing tools, with less computational overhead. Moreover,
by integrating both techniques, we can create a formal model of the neural network within a higher-
order logic framework, making it easier to prove the safety of closed-loop systems.

In the future, this method could be applied to a wide range of critical systems, ensuring that
machine learning-based controllers are not only powerful but also safe and reliable for real-world
applications.

2. Current State of the Art

Recently, significant efforts have been focused on formal or analytical verification of neural
networks using various theoretical approaches. Most of these methods are concentrated on verifying
networks with ReLU activation functions for multi-layered networks, where the activation function
has a linear nature at each stage.

One of the most commonly used methods involves SMT-based tools for verifying neural
networks. These tools help check whether the output values of the network meet the specified
requirements, ensuring the network’s correctness for certain input data.

Another approach is the use of hybrid automata for formalizing networks with more complex
activation functions, such as sigmoid or hyperbolic tangent. This approach allows the verification of
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not only linear but also nonlinear activation functions, opening new opportunities for modeling more
complex neural networks.

Simulation-based methods, particularly Monte Carlo, are also widely used for the empirical
analysis of systems with neural networks. These methods simulate the probabilistic behavior of the
network for different input values, providing a statistical assessment of the network's stability and
accuracy in real-world conditions.

Each of these approaches has its advantages but also limitations, especially in terms of
scalability for large networks and complex dynamic systems. In our work, we focus on integrating
several approaches to achieve more efficient and reliable verification results for closed-loop systems
that embed neural networks as control components.

The third section of the document provides background information on the verification tools
and methods used in the paper. It discusses the Prototype Verification System (PVS), which is a
mechanized environment for formal specification and verification. PVS enables users to specify
systems through theories, which are sets of formulas, variable declarations, and function declarations.
The PVS language supports a variety of base types like naturals, integers, reals, and booleans, all of
which are defined in a fundamental library prelude. More complex data types, such as matrices, are
provided by the Nasalib extensions.

The PVS proof system is based on sequent calculus, which allows users to prove theorems by
manipulating sequents. In sequent calculus, a sequent is a logical expression that separates the
antecedents (premises) from the consequents (conclusions). The system can perform inference rules
to break down complex proofs into simpler ones, and a proof is considered successful when all
branches of the proof tree have been validated.

The document then outlines the neural network structure used in the verification approach. It
describes the input-output relations for neural networks and introduces a specific type of network
architecture, the fully connected feed-forward neural network. The network is defined by a series of
layers, each with its own weights and biases. The neural network is mathematically represented in
terms of matrix operations, where the activation function plays a key role in transforming the
network'’s output.

Interval arithmetic is used to evaluate the possible output range of a neural network by
calculating bounds for its outputs given the range of possible inputs. In the approach outlined in this
section, each input feature to the neural network is represented as an interval with upper and lower
bounds, and the goal is to compute the output intervals for each neuron in the network. The key idea
is to propagate these input intervals through the layers of the network, applying interval arithmetic
operations at each layer. These operations evaluate the bounds for intermediate activations, which are
then used as input intervals for the subsequent layers. This process continues until output intervals
are obtained for the final layer of the network.

The use of interval arithmetic ensures that the computed output bounds are guaranteed,
meaning that the neural network will always produce results within the computed intervals for any
inputs that fall within the specified input bounds. This provides a systematic and reliable way of
verifying neural network behavior, particularly in systems where safety and dependability are
paramount.

The section also emphasizes the importance of handling non-linear activation functions, such
as the hyperbolic tangent (tanh) and sigmoid, which are commonly used in neural networks. The
approach described applies to feed-forward neural networks, especially in regression tasks, and
focuses on providing verified safety properties for closed-loop systems controlled by neural networks.

The neural network is first modeled as a sequence of transformations, starting with the input
layer and passing through each subsequent fully connected layer. Each layer is represented by a
mathematical function in PVS, which operates on matrices to describe the transformation of the
network’s input through weights and biases, followed by an activation function. This formalization
ensures that the neural network’s operations are captured precisely, using the formal language of
higher-order logic.
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Input constraints are also imposed in the formal model, with each input variable bounded
within specific ranges. These bounds are essential for ensuring the network’s behavior adheres to
safety properties. The PVS model also specifies properties of the network’s outputs, such as ensuring
that they remain within acceptable limits under certain conditions, and these properties are proved
within the formal framework.

Finally, the paper discusses how this formal model, once constructed, can be used to prove
safety properties of systems where the neural network is deployed in a closed-loop system, such as
in autonomous driving or industrial control applications. The neural network’s behavior is rigorously
analyzed, ensuring that it operates within defined safety bounds in these critical applications. This
formal verification process, leveraging PVS and interval arithmetic, provides a solid foundation for
the safe deployment of neural networks in cyber-physical systems.

1 Automatic Theory Generation

To address the challenge of scaling up the verification process for large networks, the paper
introduces a Python-based tool designed to automatically generate a PVS theory starting from a pre-
trained PyTorch neural network model. This process efficiently converts the neural network's model
into a formal theory, allowing for automatic verification. The complexity of generating the theory
depends on the number of parameters in the network, with the time for creating a theory being
relatively short (e.g., two seconds for a simple network with a 3GHz desktop processor). However,
certain assumptions are necessary to ensure the theory generation is tractable:

o The network must be a feed-forward model (e.g., a multi-layer perceptron).

e The number of neurons should be limited to 60-70 to maintain scalability with the prover.

o Linear activation functions are recommended for tighter bounds and to reduce over-
approximations.

2 Interval Arithmetic Computation

The paper integrates interval arithmetic into PyTorch by extending the base Tensor class to
include an IntervalTensor class, where each tensor element represents a range of values. This allows
for interval-based computations on neural network models. The pyinterval library, which implements
algebraically closed interval operations, is used for this purpose. This extension makes it possible to
propagate input intervals through the network, applying interval arithmetic to each layer’s output,
thus generating bounds for the network’s output.

This integration allows the IntervalTensor to function seamlessly with pre-trained models in
PyTorch without requiring recompilation of the entire framework. By overriding the layer operation
implementations within the IntervalTensor class, it provides a common interface that adheres to
PyTorch’s original structure, enabling efficient interval arithmetic without disrupting the PyTorch
model flow.

3 A Small Example of the Two Techniques

To illustrate the practical application of these techniques, the paper provides an example of a
simple neural network with a linear layer followed by a ReL. U activation function. The corresponding
PyTorch code for this model is provided. Using the automatic theory generation tool, the paper
demonstrates how a formal PVS theory can be generated for this simple network. The constraints on
the input variables and the corresponding theorem to verify the output are specified, showing how
these methods work in practice.

4 Limits of the PVS Theory Generation and Proof

The section also highlights some limitations of the approach. As the size of the network
increases, both the complexity of generating the formal theory and the associated computational costs
increase. The scalability of the theory generation process is constrained by the size of the network,
with the automatic tool being effective for moderately sized networks but encountering challenges
with very large ones.

In conclusion, Section 6 focuses on the integration of formal verification tools within the
PyTorch framework, showing how interval arithmetic can be applied to neural networks for proving
their safety properties in a closed-loop system. This approach is designed to be scalable, although it
has practical limits when applied to very large networks.
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In this use case, the application of neural networks for controlling an autonomous vehicle's
adaptive cruise control system is explored. The scenario considered involves the vehicle (referred to
as the "ego car") adjusting its speed and acceleration based on the position and speed of a lead car,
which is detected through sensors.

The MPC uses three nominal inputs: the relative velocity of the lead car, the relative distance,
and the ego car’s longitudinal velocity. The output of the controller is the acceleration of the ego car,
which is the only regulated variable.

The paper proposes replacing the MPC with a surrogate model—a neural network—capable
of handling the same inputs to generate the desired acceleration output. The neural network is trained
on data consisting of input-output tuples: the lead car's relative velocity, relative distance, and the ego
car’s longitudinal velocity, with the corresponding acceleration of the ego car. The network is trained
using the ADAM optimizer for 1000 epochs with a mean squared error (MSE) loss function,
achieving an MSE of 0.034.

The substitution of the MPC with a neural network in this context is motivated by its potential
for more efficient computation, particularly in embedded systems. The MPC traditionally solves a
constrained quadratic programming (QP) optimization problem in real time. However, using a neural
network to replace the MPC offers computational advantages, especially when real-time problem-
solving is required, as neural networks can provide a faster solution.

This safety property is crucial to verify the reliability of the autonomous system, particularly
in the context of a neural network replacing the original MPC.

To evaluate the neural network's performance, the boundaries of the network's output are
analyzed. The neural network’s outputs are evaluated by adjusting the input parameters, particularly
the relative distance between the two cars. This test simulates the scenario where the ego car is too
close to the lead car and needs to decelerate to maintain the safety distance.

Comparing the verification times of different neural network verification tools, the results
show that the proposed method significantly reduces the time overhead, making it more efficient than
existing approaches. This is particularly valuable in the context of safety-critical systems where
verification time is a crucial factor.

Through this process, the approach not only ensures that the neural network behaves safely
within the defined bounds but also demonstrates how the combination of formal verification
techniques, such as interval arithmetic and theorem-proving, can be effectively used to guarantee the
reliability of neural networks in dynamic and closed-loop systems, such as autonomous driving.

Conclusion

We have developed an innovative verification method that combines the advantages of
interval arithmetic with formal verification through theorem proving. This hybrid approach offers a
strong framework for validating the safety and dependability of neural networks in closed-loop
systems.

Our method is fully compatible with the PyTorch deep learning framework, allowing for easy
integration without requiring significant modifications to existing workflows. This enabled us to
formalize a closed-loop system for an adaptive cruise control application, where a model-predictive
controller was substituted with a neural network that had been thoroughly trained. Additionally, we
were able to define and verify safety requirements for the system-controlled variables.

The proposed approach showed considerable improvements in verification efficiency,
drastically reducing the time overhead compared to other leading techniques. Future work will focus
on optimizing the interval arithmetic method, addressing the limitations related to overapproximation
of results, and enhancing interval computation performance through GPU acceleration. Furthermore,
we plan to extend this research by incorporating more detailed vehicle dynamics, including modeling
behavior in PVS with a set of differential equations to account for more complex scenarios.
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Introduction.

Over the past decade, DSSE has gained significant attention in power system research due to
the increasing role of distribution networks in energy production, especially with the decline of
centralized generation. Distribution networks have become more important as they incorporate
renewable energy sources and smart grid technologies, improving the efficiency, sustainability, and
reliability of power grids.

The section highlights the role of DSSE in improving network monitoring and analysis in real-
time. Distribution systems are critical to the sustainability and reliability of power grids, especially
as they integrate renewable energy sources. The paper reviews several methods for DSSE, including
traditional model-based algorithms like Weighted Least Squares (WLS), which require detailed
knowledge of network parameters, and more advanced approaches such as machine learning and
optimization techniques. Among the modern approaches, Deep Neural Networks (DNNs) have shown
promise due to their ability to model complex, non-linear relationships in large datasets, though they
require substantial computational resources.

The introduction also discusses various approaches to DSSE, categorizing them into model-
based, forecasting-aided, and data-driven techniques. While traditional model-based methods are still
widely used, the shift towards data-driven methods, particularly those using DNNSs, is seen as a
promising future direction due to their scalability and flexibility. The paper focuses on improving the
accuracy of DNN-based DSSE using a hyperparameter optimization technique called Tree-structured
Parzen Estimator (TPE), which is demonstrated on real-life low-voltage distribution networks in
Hungary.

This approach marks a significant improvement over traditional methods like WLS by
optimizing hyperparameters for better accuracy and computational performance. The section
concludes by outlining the potential advantages of DNN-based DSSE with TPE in terms of accuracy,
efficiency, and its applicability in real-world systems, especially for tasks such as renewable energy
integration and real-time monitoring.

This part discusses the datasets used for the study, focusing on real-life low-voltage (LV)
supply areas in Hungary. These networks were modeled to address challenges in obtaining network
topology information, using data from Distribution System Operator (DSO) systems. The areas were
selected based on their complexity and size, with each containing various circuits connected to an
external grid element, a medium-voltage to low-voltage (MV/LV) transformer, and associated
network components.

The four areas identified by numbers 18680, 44600, 44333, and 20667 are considered. Each
area consists of different numbers of circuits, ranging from 2 to 10. The method used for modeling
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LV networks adapts to data with inconsistent or uncertain lengths, utilizing available network data
for better accuracy in simulating realistic scenarios.

In terms of input and output, the primary neural network applied in the study was a Fully
Connected Neural Network (FCNN). The neural network used 15-minute interval data from both
pseudomeasurements and weather data, such as temperature, sun altitude, radiation, wind speed, and
precipitation. These data were used to improve the accuracy of the state estimation by accounting for
external factors influencing consumption patterns. The data was also normalized and transformed
into cyclical encodings to ensure proper learning performance.

The inputs to the network included power consumption, time data, and weather conditions,
while the outputs were voltage amplitudes and angles. The data was divided into two sets: one for
training and the other for validation. Training was performed on data from odd weeks, and validation
was done using data from even weeks. This setup helped assess the accuracy and generalizability of
the neural network model.

By applying this method, the study demonstrated that neural networks could effectively model
and estimate power network states while integrating weather data and temporal factors, leading to
improved accuracy compared to traditional estimation methods.

The authors introduce their approach for optimizing deep neural networks (DNNSs) for
Distribution System State Estimation (DSSE) tasks, specifically in the context of low-voltage (LV)
networks. They begin by detailing the architecture of the fully connected neural network (FCNN)
used in the study. FCNN was chosen for its simplicity, which allows for a clear comparison of how
different hyperparameters affect network performance. The first layer of the FCNN computes the
output by multiplying the input data with a weight matrix and adding a bias term, followed by non-
linear activation using the ReLU function. This non-linearity is key for enabling the network to
capture complex relationships in the data.

The paper also compares the FCNN to other competing architectures, such as Recurrent
Neural Networks (RNNs) with Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU)
units, as well as Graph Neural Networks (GNNSs). These alternatives are noted for their ability to
process sequential data and model spatial relationships, respectively. For example, RNNs excel at
capturing temporal dependencies, while GNNs are particularly effective in situations where data is
structured as a graph, as in power grid networks. However, the study ultimately concludes that the
FCNN with hyperparameter optimization outperforms these other models in the specific context of
DSSE for low-voltage networks.

Training these neural networks involves optimizing a number of hyperparameters, and the
authors use the Tree-structured Parzen Estimator (TPE) algorithm for this purpose. TPE is a Bayesian
optimization method that models the hyperparameter space probabilistically, allowing it to more
efficiently search for the best configuration compared to traditional random search or grid search
methods. This approach allows the authors to achieve better results in terms of estimation accuracy
and computational efficiency. Notably, TPE is shown to significantly outperform random search, and
even the WLS method, in terms of reducing error and computational overhead.

By comparing the results of these different architectures and optimization strategies, the
authors demonstrate the effectiveness of FCNN combined with TPE for DSSE tasks. Their findings
emphasize the critical role of hyperparameter optimization in improving the performance of neural
network-based state estimation methods for real-world low-voltage networks.

This part focuses on the experimental results of applying a deep neural network (DNN) for
distribution system state estimation (DSSE) in low-voltage networks. The results demonstrate
significant improvements in accuracy and efficiency compared to traditional methods such as the
weighted least squares (WLS) method.

The DNN-based approach significantly reduces the relative error in voltage amplitude and
angle estimations, achieving improvements ranging from 14% to 73%, depending on the network's
size. This demonstrates the DNN's robustness and its ability to handle complex nonlinear
relationships in real-world datasets. In addition to improving estimation accuracy, the method also
provides substantial performance gains in terms of speed. Using GPU parallel computing, the DNN-
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based model was able to complete the state estimation process in a fraction of the time required by
the WLS method. In some cases, the speed-up was over 20,000 times faster.

The results also indicate that hyperparameter optimization (HPO) plays a crucial role in
optimizing the DNN model. The study utilizes the Tree-structured Parzen Estimator (TPE) algorithm,
which is a Bayesian HPO method. TPE proved to be more efficient than simpler optimization methods
like random search, achieving faster convergence and more accurate results. Moreover, the study
reveals that certain hyperparameters, such as batch size, learning rate, and hidden layer configuration,
are correlated with the size of the distribution network, which influences the overall accuracy of the
state estimation.

In conclusion, the DNN approach, supported by HPO, offers a more accurate and efficient
solution for DSSE in low-voltage networks compared to traditional methods, making it a valuable
tool for the integration of renewable energy sources and real-time monitoring of power systems.

The results of the hyperparameter optimization process demonstrate significant improvements
in the accuracy and performance of the neural network. In most cases, the optimal values for
hyperparameters such as batch size, learning rate, and hidden layer sizes are closely linked to the size
of the distribution network. For larger areas, the HPO algorithm enables the use of larger batch sizes,
speeding up the training process without sacrificing accuracy. This is particularly beneficial for more
complex parts of the distribution system.

The analysis shows that the FCNN model optimized with HPO outperforms other models such
as LSTM, GRU, and GNN in terms of accuracy and efficiency. The results also reveal that optimizing
the hidden layer sizes has a more significant impact on larger networks, while other parameters like
learning rate and step size optimize the training process more efficiently for larger networks. The
proposed method achieves faster computation times and better estimations compared to traditional
methods like the weighted least squares (WLS) approach.

In conclusion, the implementation of the Tree-structured Parzen Estimator (TPE) for
hyperparameter optimization in FCNN-based DSSE significantly improves the estimation accuracy
and efficiency of state estimation in low-voltage networks.
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Introduction:

In recent years, neuroscience has made great strides in its efforts to understand how networks
of neurons interact in both space and time, ultimately leading to cognition and behavior.
Technological advancements have significantly improved our ability to record neural activity with
high temporal resolution, allowing us to monitor the activity of hundreds of neurons simultaneously.
Despite these advances, the data gathered has yet to yield clear answers about the fundamental
mechanisms that govern neural systems, how neuronal connectivity relates to dynamics, and how
complex behaviors emerge from these interactions.

The challenge in neuroscience today is akin to the situation in particle physics before the
development of the Standard Model. Although there have been various models proposed to explain
neural activity, the field still lacks a comprehensive, mechanistic understanding grounded in the deep
physical principles that could unify these observations. The progress made in this area relies heavily
on combining experimental data, computational models, and theoretical frameworks.

One such advancement has been the application of methods from theoretical particle physics,
specifically quantum field theory (QFT), to understand systems of interacting binary variables like
the spiking activity of neurons. These mathematical approaches help to translate complex neural
interactions into terms that are grounded in universal laws of physics. The application of these
methods reduces the gap between abstract theoretical models and real experimental data, offering
new ways to link observed neural activity to models that are underpinned by physical principles.

In addition, the focus on these approaches is particularly relevant in an era marked by
significant progress in computational power. With the help of these new computational tools, it is
becoming increasingly possible to connect empirical observations of neural activity to generative
models. These models are not only based on observed data but also follow the laws of physics,
creating a new way to understand how complex neural systems function and how they relate to
physical principles.

Background:

In the field of computational neuroscience, there are currently two dominant perspectives:
manifold modeling and circuit modeling. Manifold modeling posits that neural computations can be
described by embedding the high-dimensional state space of neural dynamics into lower-dimensional
manifolds. This approach suggests that understanding neural activity is about identifying the
statistical relationships within the data without necessarily linking them to causal mechanisms. These
methods, such as principal component analysis (PCA), reduce the data into lower-dimensional spaces
that maximize variance, and they are effective for exploratory analysis and predicting experimental
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variables. However, they often provide results that lack interpretability in the context of general
principles and can lead to contradictory conclusions.

On the other hand, circuit modeling relies on the assumption that the connectivity between
neural units forms the foundational mechanism for brain function. This approach integrates realistic
biophysical parameters like membrane potentials and cell types, allowing for the prediction of neural
activity through a set of specific connections. While successful in modeling certain neural behaviors,
such as stimulus selectivity and neural dynamics, circuit models are often criticized for being highly
parameter-dependent, making it difficult to scale them to larger networks. These models also face
challenges in explaining mixed selectivity and other phenomena that involve multiple, interacting
variables.

Neither approach fully integrates with general physical principles, which creates a gap in our
understanding. One promising method that attempts to bridge this gap is neural field theory (NFT).
NFT models large-scale neural activity using differential equations and considers anatomical and
physiological details, offering a more comprehensive way to describe brain dynamics. However, like
other approaches, it faces challenges in linking the various scales at which neural processes occur.

In the realm of physics, the most successful models have applied statistical physics principles
to neural networks. For example, the Amari-Hopfield model, a prominent framework in
computational neuroscience, draws parallels between the energy function in neural systems and the
energy in spin systems from magnetic physics. This connection allows for the use of stochastic
dynamics and bifurcation theory to describe neural behavior. Yet, these models often struggle with
exact solutions, particularly when dealing with large systems, and the challenge of linking them to
empirical data remains.

In response to these limitations, some researchers have argued that quantum field theory
(QFT) could provide a more robust framework for understanding neural systems. By treating neural
interactions as systems of discrete binary variables, much like the interactions of particles in physics,
this approach could offer a more direct connection between theoretical models and experimental data.

Preliminaries:

To dive deeper into the framework we propose, let’s briefly discuss the Lagrangian description
of a dynamic system, a key component of our model. The Lagrangian approach, while less well-
known outside of physics, offers an essential perspective. Unlike other methods, such as Newtonian
mechanics, the Lagrangian framework focuses on energy, generalized coordinates, symmetries, and
conservation laws. This method is particularly useful for complex systems with many degrees of
freedom, as it unifies a wide range of physical phenomena, from classical mechanics to
electromagnetism and general relativity.

At its core, the Lagrangian represents the difference between kinetic and potential energy. The
action, which is the integral of the Lagrangian over time, encapsulates the dynamics of the system.
The principle of least action, one of the fundamental laws of physics, asserts that the path a system
takes between two states minimizes the action. This idea, which parallels Newton's laws of motion,
is a powerful tool for describing the evolution of physical systems.

In the context of neuroscience, most foundational models do not yet incorporate the principle
of least action. While some indirect evidence exists supporting the idea, a systematic Lagrangian
approach to neural dynamics has not yet been fully explored. Reimagining neural circuits using this
framework would allow neuroscience to engage more directly with the broader theoretical landscape
of physics, borrowing analytical techniques and numerical methods from these fields. If physics
consistently operates under this principle, it seems only logical to extend this approach to neural
circuits as well.

Fundamentals:

Our proposed model introduces a shift from continuous spacetime to a discrete lattice,
converting fields into variables defined at specific lattice sites at discrete time steps. This approach is
grounded in lattice field theory (LFT), a standard computational technique in quantum field theories
(QFT), especially useful when analytical methods are not feasible. The lattice formalism guarantees
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the preservation of symmetries and conservation laws, even when dealing with a discrete
approximation of continuous space.

We specifically focus on binary activity within neural networks. Neurons are represented as
binary variables—either 0 (inactive) or 1 (active)—which reflects their spiking behavior. This
simplification, though basic, captures the essence of neural interactions in a compact form. Each
neuron in the network is mapped to a lattice vertex, and the temporal evolution of the neural network
is discretized over time. This allows us to model the spiking activity of neurons in a lattice structure,
where each site represents a neuron, and the interactions between neurons are represented as
interactions between the corresponding lattice points.

The time intervals between computational steps are chosen to be the smallest possible value,
corresponding to the duration of a spike. In this framework, the minimum relevant timescale is tied
to the refractory period of the neurons, which typically lasts about 1 millisecond. The activity of the
neurons is then captured in a binary array, known as the "kernel," where each row represents a neuron,
and each column represents a time step. This kernel contains the temporal sequence of spikes recorded
for a network of neurons during an experiment.

The spatial correlations between neurons are captured by a matrix that quantifies pairwise
correlations over the entire time period, while the temporal correlations represent how neurons'
spiking patterns relate to each other across time. These matrices, known as the hypermatrix, allow us
to model the collective behavior of neural activity as a set of spatiotemporal patterns, making it easier
to analyze and interpret the interactions within the network.

Modeling Neural Networks with the Action:

In our framework, the evolution of neural dynamics is modeled as a process influenced by
past states, akin to a quantum system with memory. This approach, while initially seeming
unconventional, simplifies the problem remarkably. The classical (non-quantum) evolution of a
system can always be derived from the quantum version, meaning that our model operates within a
broad and flexible theoretical framework.

We treat the neural network as a discrete system of interacting binary fields, analogous to
qubits in quantum mechanics. This simplification allows us to apply lattice-based statistical
mechanics to describe neural interactions, enabling the use of powerful methods from quantum field
theory (QFT) to solve the system. The challenge of determining the temporal evolution of such a
system can be tackled through statistical mechanics techniques applied to the lattice, providing us
with an efficient way to study complex neural networks.

The action function in this model represents the system's behavior over time. Just as in particle
physics, the action function defines how the system evolves by balancing kinetic and potential
energies. In the case of neural networks, the action function encodes the collective behavior of
neurons over time, capturing both the spatial and temporal interactions between them. By computing
the action of the system, we can understand how the network of neurons interacts, how information
is transmitted, and how these interactions change over time.

Renormalization and Effective Theories:

One of the key challenges in relating theory to experimental data is the concept of
renormalization, which allows us to simplify complex systems by focusing on relevant scales. In
neural networks, this process involves simplifying the system's behavior at different spatial or
temporal scales while retaining the essential dynamics. Renormalization allows us to connect
microscopic details (such as individual neurons or synapses) with macroscopic observations (such as
large-scale brain activity) without needing to model every detail of the system.

In our framework, renormalization is applied by decimating the lattice, essentially averaging
over smaller-scale details to produce a simplified model that still captures the essential features of the
neural network. This decimation process is particularly useful when dealing with experimental data
that cannot capture every individual neuron’s behavior but can provide insights into the collective
activity of larger groups of neurons. By applying renormalization, we can connect the data recorded
from experiments (such as electrode arrays) with the theoretical model, providing a more accurate
and comprehensive understanding of neural interactions.
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For example, when analyzing data from a Utah array, which samples activity from a grid of
electrodes, the neural dynamics can be modeled as a decimated lattice. This method allows us to treat
the entire minicolumn as a single unit, simplifying the modeling process while still capturing the
relevant dynamics. The use of renormalization by decimation ensures that we focus on the most
significant interactions in the system, leading to a more manageable and interpretable model.

Learning Neural Interactions from Data:

One of the main goals of this approach is to learn about the underlying interactions within a
neural network from experimental data. By measuring quantities like average spiking activity and
correlations between neurons, we aim to infer the neural interactions that govern the observed
dynamics. This inverse problem, where we aim to infer the model parameters from experimental data,
is central to understanding how neural circuits function.

To solve this problem, we use statistical models like maximum entropy models, which provide
a way to derive the parameters of the network from the observed data. These models make minimal
assumptions about the system, ensuring that the derived parameters capture the true underlying
interactions. By applying these models to neural data, we can learn about the connectivity and
dynamics of the network.

One important aspect of our model is its ability to capture both the spatial and temporal aspects
of neural interactions. Unlike traditional maximum entropy models, which focus on the spatial
correlations of neural activity, our model includes a kinetic term that captures the temporal evolution
of the system. This allows us to study how neurons influence each other not only in space but also
over time, providing a more complete description of neural dynamics.

Applications and Future Directions:

The framework we propose offers exciting possibilities for studying neural systems, both at
the level of individual neurons and across large networks. By integrating data from multiple sources,
including electrophysiological recordings, imaging, and behavioral data, we can build more
comprehensive models of brain activity. These models can be used to simulate neural dynamics,
predict neural responses to different stimuli, and explore how changes in connectivity or dynamics
affect brain function.

The approach also opens up new possibilities for generative modeling of neural activity. By
using the principles of lattice field theory, we can generate synthetic neural data that mimics the
observed dynamics of real neural networks. This could be useful for testing hypotheses about neural
function and for developing new techniques for analyzing neural data. Additionally, the ability to
model neural networks within a physical framework could lead to a deeper understanding of the
brain’s computational principles, potentially unlocking new insights into cognition, learning, and
behavior.

The flexibility of our approach makes it adaptable to a wide range of neural systems, from
small circuits of neurons to large-scale brain networks. By refining the renormalization techniques
and incorporating more sophisticated models of neural activity, we can continue to improve our
understanding of how the brain works, both in health and disease.

LFT and Biohybrids Networks:

The recent progress in integrating biological brain tissue with bio-inspired electronics has
opened exciting new avenues for understanding and utilizing neural systems. These advancements
have led to the development of brain organoids and neuromorphic systems, which represent
significant steps forward in both biological research and technology. Brain organoids—miniaturized,
simplified versions of the brain—allow researchers to model neural networks in a laboratory setting,
while neuromorphic systems are electronic devices designed to simulate the brain's computational
processes.

The integration of biological neurons with artificial systems, also known as biohybrids, is a
particularly promising area of research. The potential to combine the flexibility and learning
capabilities of biological networks with the precision and efficiency of artificial systems could lead
to novel applications in both neuroscience and technology.
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Our framework, based on lattice field theory (LFT), could play a critical role in the
development of these biohybrid systems. By using LFT to model neural dynamics in these systems,
we can more accurately simulate how artificial and biological components interact. This could lead
to more efficient designs for neuromorphic chips, which, like the human brain, process information
only when events (such as spikes) occur. Such chips could be energy-efficient while maintaining the
adaptability and learning capabilities of biological neural networks. LFT offers a powerful tool to
describe the dynamics of these biohybrids, as it allows us to model their activity in terms of discrete
units (binary states) and map these onto experimental data.

Moreover, by applying LFT in this context, we can explore how artificial systems, such as
neuromorphic chips, can be fine-tuned based on the activity of recorded biological neurons during
both the design and testing phases. This creates the potential for more efficient and biologically
plausible artificial neural networks, which could have applications ranging from brain-machine
interfaces to advanced Al systems.

Limitations of the Study:

While our framework offers numerous advantages, there are several open challenges that need
to be addressed before it can be fully implemented. One of the main challenges lies in linking the
effective theory, which describes the neural network at larger scales, with the microscopic theory that
focuses on individual neurons. This requires the use of renormalization procedures, which are still in
the early stages of development. A more detailed understanding of how to apply these procedures
across different scales will be crucial for advancing the framework.

Currently, we employ approximations, such as the two-body truncation, to simplify the
system. This approach is valid when covariances between neurons are small, but it may not hold in
all cases. Additional approximations, such as stationary conditions truncation, are applied when
synaptic connections remain relatively constant over time. These approximations are valid for most
neurophysiology experiments, where the scale of changes in brain activity is manageable. However,
in experiments with highly dynamic synaptic properties or networks with rapidly changing
connectivity, these simplifications may not be sufficient.

Another challenge is mapping the observed dynamics of the neural system to its underlying
anatomical structure. While we assume that the anatomical structure of neurons and synapses is
reflected in the observed dynamics, the exact correspondence between the coupling parameters and
the physical structures is not trivial. In some cases, it may be difficult to determine these structures
purely from observable data, especially when there is insufficient precision in the measurements.

Finally, like many models in computational neuroscience, our framework faces the challenges
associated with inverse problems—problems where the goal is to infer the underlying parameters of
a system from limited or noisy data. The large number of parameters in the model, combined with
the relatively small amount of experimental data, makes this task particularly challenging. However,
advances in computational methods and machine learning techniques may help address these issues
in the future, enabling more accurate inference from experimental data.

Theoretical Insights:

At the heart of our model lies the concept of the action function, which is used to describe the
dynamics of neural networks. The action is the core of the system’s evolution and is formulated in
terms of the Lagrangian, which is the difference between the system's kinetic and potential energy.
In the case of neural networks, the action incorporates both the interactions between neurons and their
temporal evolution, providing a unified framework for understanding the behavior of large-scale
neural systems.

To compute the action, we utilize a statistical field theory approach, where the action is
expanded as a Taylor series. This allows us to describe the interactions in a neural network at multiple
levels of complexity, from one-vertex interactions (simple neuron activity) to higher-order
interactions (complex patterns of neural firing). The mathematical formalism enables us to analyze
how the system’s state evolves over time, providing insights into how different parts of the network
influence one another and how these interactions shape brain function.
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By focusing on binary variables for neuron activity (spike or no spike), we simplify the
description of neural interactions, making the model more computationally tractable. This
simplification does not undermine the complexity of the system but rather allows us to capture its
essential dynamics in a manageable form. As we continue to refine the model, we can extend it to
account for more complex neurophysiological signals, such as local field potentials (LFPs) or multi-
unit activity (MUA), providing a more comprehensive description of neural function.

Renormalization and Multiscale Analysis:

One of the most powerful features of our framework is its ability to integrate renormalization
techniques, which are essential for scaling up the model from individual neurons to large-scale
networks. Renormalization allows us to "zoom in" or “zoom out" on different parts of the system,
focusing on the relevant scales while ignoring the less important details. This process is particularly
useful when dealing with experimental data, which often cannot capture every neuron in a network
but can provide valuable insights into the collective behavior of the network as a whole.

In practice, we apply a renormalization-by-decimation approach, where we simplify the
system by integrating out the small-scale details (such as individual neurons) and focusing on the
larger-scale patterns (such as neural minicolumns). This method preserves the essential dynamics of
the system while making the model more computationally feasible.

For example, when analyzing data from a Utah array, which records neural activity from a
grid of electrodes, we can model the neural dynamics as a decimated lattice, where each electrode
corresponds to a larger group of neurons (a minicolumn). This decimation process allows us to focus
on the most relevant interactions within the neural network while simplifying the overall model. By
applying these technigues, we can make accurate predictions about neural activity across different
spatial and temporal scales, providing valuable insights into brain function.

Learning Neural Interactions from Data:

Understanding neural network interactions involves determining how the activity of neurons
is organized and how these interactions contribute to overall brain function. To achieve this, we must
infer the underlying neural connections from experimental data. This is known as the inverse problem,
where the goal is to extract model parameters (such as coupling strengths between neurons) based on
observed neural activity. This process is crucial for advancing our understanding of how neural
networks operate and for developing accurate models of brain activity.

One approach to solving the inverse problem is through the use of maximum entropy models.
These models maximize the entropy, or uncertainty, of a system subject to certain constraints,
ensuring that the inferred model makes the fewest assumptions about the network's behavior. This
approach has been applied in neuroscience to infer the spatial couplings between neurons, but it often
assumes that temporal dynamics are not explicitly modeled. While these models can capture basic
interactions, they do not account for the temporal evolution of the system, which is a critical aspect
of neural dynamics.

Our framework addresses this limitation by incorporating a kinetic term in the model. This
term explicitly accounts for the temporal evolution of the system, allowing the model to capture both
the spatial and temporal aspects of neural interactions. By doing so, we can infer not only how neurons
are connected but also how they influence each other over time. This extended model can be applied
to various types of neural networks, whether they exhibit asynchronous activity, oscillations, or other
complex dynamic behaviors.

For example, the model can be used to simulate neural time series, estimate the coupling
parameters from experimental data, and compare the results with theoretical predictions. It can also
be used to study different dynamical regimes of the system, such as oscillatory or chaotic dynamics,
by analyzing how the coupling parameters change under different conditions. This approach allows
us to gain insights into how neural circuits operate, how their dynamics are influenced by external
factors, and how these dynamics relate to the brain’s functional behavior.

Applications and Future Directions:

The model we present has a broad range of applications, both in basic neuroscience research
and in more applied fields, such as neuroprosthetics and brain-machine interfaces. One promising
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area is the study of large-scale brain networks. By using the principles of lattice field theory (LFT),
we can model these networks at multiple levels of organization, from individual neurons to whole
brain regions. This multiscale approach enables a more comprehensive understanding of how
different brain regions communicate and cooperate to produce complex cognitive functions.

Additionally, our framework could play a key role in the development of generative models
for neural activity. These models would allow researchers to simulate the neural activity of large
networks based on the observed dynamics of real systems. By comparing these simulations with
experimental data, we can test hypotheses about neural function and improve our understanding of
how the brain processes information. Furthermore, these generative models could be used to develop
new tools for analyzing neural data, providing insights into the mechanisms underlying cognition,
learning, and behavior.

In the realm of artificial intelligence, our approach could be used to improve the design of
neuromorphic systems—artificial neural networks that mimic the structure and function of biological
brains. By applying LFT to neuromorphic circuits, we could optimize their design to better replicate
the dynamics of real neural systems. This could lead to more efficient and adaptable artificial systems,
with applications in areas such as robotics, machine learning, and brain-computer interfaces.

Another exciting direction is the integration of our model with biological systems, such as
brain organoids and biohybrids. By using LFT to model the neural dynamics in these systems, we can
explore how artificial and biological components interact. This could pave the way for the
development of hybrid systems that combine the strengths of both biological and artificial networks,
offering new opportunities for both neuroscience research and the creation of bio-inspired
technologies.

Conclusion:

The framework we have developed represents a powerful and versatile tool for studying neural
dynamics. By applying lattice field theory (LFT) to neural networks, we can gain new insights into
the complex interactions that underlie brain function. Our approach allows us to model neural systems
at multiple scales, from individual neurons to large-scale brain networks, and provides a more unified
and physically grounded understanding of neural dynamics.

While there are still challenges to overcome—such as refining renormalization techniques and
addressing the limitations of inverse problems—the potential of this framework is vast. It opens up
new possibilities for both basic neuroscience and applied fields, offering a path forward for more
accurate models of brain activity, more effective brain-machine interfaces, and a deeper
understanding of cognition and behavior.

As computational power continues to advance, we expect that these models will become even
more sophisticated and capable of addressing the growing complexity of neural systems. By linking
experimental data to physical principles, our approach provides a novel perspective on how the brain
operates and how it can be modeled, offering exciting prospects for the future of neuroscience and
neuroengineering.
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ARTIFICIAL NEURAL NETWORKS FOR OPTIMIZING DISTRICT HEATING
NETWORKS.

Abstract: Accurate forecasting of heat demand is crucial for optimizing the energy efficiency of district heating
networks (DHNs), which are subject to challenges such as fluctuating weather, unpredictable user behavior, and varying
energy supply. This study assesses the performance of Artificial Neural Networks (ANNSs), including advanced models
like Long Short-Term Memory (LSTM) Networks, Convolutional Neural Networks (CNNs), and the Temporal Fusion
Transformer (TFT), compared to the traditional SAR-IMAX statistical model. The evaluation focuses on each model's
capacity to predict varying heat demand profiles and deliver interpretable forecasts with optimization techniques,
particularly highlighting the importance of clear confidence intervals. Using a year’s worth of data from the Stiftung
Liebenau DHN, which integrates multiple energy sources such as Combined Heat and Power (CHP), biomass, and
natural gas, along with diverse heat sinks like residential buildings and greenhouses, the study finds that while the CNN
model achieves the lowest Mean Absolute Percentage Error (MAPE)—27% for both summer and winter, and 17% for
winter alone—accuracy is notably influenced by data volatility and irregularities. Despite this, the models successfully
capture general trends, though predicting demand peaks and fluctuations remains challenging. An economic assessment
reveals that these predictive methods significantly improve energy efficiency and provide economic advantages due to
their low initial investment requirements.

Keywords: heat demand, forecasting, district heating, artificial neural networks, energy efficiency, prediction
accuracy, economic analysis, confidence intervals

Introduction:

The accurate forecasting of heat demand is crucial for optimizing the operation of district
heating networks (DHNSs), which face challenges such as variable weather, fluctuating user behavior,
and energy availability. To address this, the study examines the effectiveness of various artificial
neural network (ANN) models, including Long Short-Term Memory Networks (LSTM),
Convolutional Neural Networks (CNN), and the Temporal Fusion Transformer (TFT), and compares
them to the traditional statistical SAR-IMAX model. These models are evaluated for their ability to
predict diverse heat demand profiles and produce interpretable forecasts with optimization strategies,
especially focusing on understandable confidence intervals. Using data from Stiftung Liebenau DHN,
which incorporates multiple energy sources such as Combined Heat and Power (CHP), biomass, and
natural gas, and various heat sinks including residential buildings and greenhouses, the study finds
that the CNN model, while achieving the lowest Mean Absolute Percentage Error (MAPE) of 27%
for both summer and winter and 17% for winter alone, is significantly influenced by data volatility
and irregularities. However, the models successfully capture overall trends, though predicting
demand peaks and fluctuations proves challenging. An economic analysis indicates that applying
these forecasting methods can significantly improve energy efficiency and provide economic benefits
due to low investment costs.

The study aims to enhance the forecasting of heat demand for district heating networks
(DHNSs) by applying advanced Artificial Neural Network (ANN) models. The models assessed
include Long Short-Term Memory (LSTM) Networks, Convolutional Neural Networks (CNN), and
Temporal Fusion Transformers (TFT). These models were compared against the statistical SAR-
IMAX model to evaluate their effectiveness in predicting heat demand and providing reliable,
interpretable forecasts. The key focus of the research is on the models' ability to offer optimization
strategies with clear confidence intervals. To test the models, data from Stiftung Liebenau DHN,
collected over the course of a year, was used. This data set included multiple energy sources, such as
Combined Heat and Power (CHP), biomass, and natural gas, and encompassed a wide range of heat
sinks, including residential buildings, greenhouses, and other facilities.

Despite the CNN model delivering the best performance, with a Mean Absolute Percentage
Error (MAPE) of 27% for both summer and winter and 17% for winter alone, the accuracy of the
models was influenced by the volatility and irregularities present in the data. While the models could
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capture general trends, they faced difficulties in predicting peak demands and fluctuations.
Nevertheless, an economic analysis revealed that the application of these predictive models could
significantly enhance energy efficiency. Moreover, their relatively low investment costs mean that
they offer substantial economic benefits.

The study highlights the importance of accurate forecasting in optimizing the operation of
district heating networks (DHNSs), particularly in the context of 4th generation systems. These
networks, which deliver heat from central sources to various buildings, are essential for urban energy
infrastructures. The transition towards 4th generation systems involves integrating renewable energy
sources, improving the efficiency of heat distribution, and adapting to varying heat demands. One of
the key challenges of such systems is the integration of decentralized and fluctuating renewable
energy sources, as well as the need for bidirectional heat transfer with buildings, efficient energy
storage, and low-temperature operations.

Given the complexity of these systems and the diverse consumers they serve, it is crucial to
develop advanced predictive techniques that can process large volumes of data and account for
numerous variables influencing heat demand. By using predictive models, energy stakeholders can
better anticipate heating requirements, leading to more efficient energy distribution, reduced
operational costs, and greater energy sustainability. Traditional statistical methods for heat load
forecasting have evolved into more sophisticated Artificial Neural Networks (ANNSs), which offer
improved accuracy and adaptability in modeling complex, nonlinear relationships in heating demand
patterns. The growing availability of data from smart meters and 10T devices has significantly
enhanced the capabilities of ANNs in this domain. These advanced models can process real-time data
and respond more dynamically to changing conditions, ultimately contributing to more efficient and
sustainable energy systems.

The paper explores various machine learning methods for time series forecasting, with a
particular focus on Artificial Neural Networks (ANNs) and Deep Neural Networks (DNNs). These
techniques are increasingly being used to predict thermal load for district heating networks (DHNS),
which involves forecasting both individual heat consumers and the overall demand of the entire
network. The study highlights how the growing availability of data, as well as advances in
computational power, have made traditional forecasting methods less effective compared to Al-based
approaches.

Neural network architectures that include recurrent components, such as Long Short-Term
Memory (LSTM) networks, are often employed for handling sequential data, which is a key feature
of heat demand patterns. Other advanced architectures, such as Temporal Convolutional Networks
(TCNs), are also utilized for improving forecasting accuracy. Moreover, hybrid approaches
combining DNNs with traditional time series analysis methods are emerging as powerful solutions
for improving prediction accuracy.

The research addresses the practical challenges of applying Artificial Neural Networks
(ANNSs) in real-world district heating network (DHN) applications. While ANNs show great promise
in predicting heat demand, their real-world implementation faces difficulties due to the diversity of
consumers within a DHN and the insufficient availability of high-quality data. To improve the
accuracy of predictions, the study emphasizes the need for uncertainty estimates, model
interpretability, and the integration of advanced machine learning techniques.

The study compares two standard ANN architectures: Convolutional Neural Networks
(CNNs) and Long Short-Term Memory (LSTM) networks. It also explores two different approaches
for multi-step predictions—single-shot and autoregressive prediction. These approaches are
evaluated to determine which is more suitable for forecasting heat demand across different
consumers, including residential buildings, offices, and greenhouses. Additionally, the Temporal
Fusion Transformer (TFT) network is considered for comparison, as it is specifically designed for
time series forecasting. The research further explores how these models can be integrated into control
algorithms to enhance operational efficiency.

The paper uses the Stiftung Liebenau DHN, a small local community DHN in Meckenbeuren,
Germany, as a case study. This DHN features multiple heat sources, including Combined Heat and
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Power (CHP), natural gas, and biomass, as well as various heat sinks such as residential buildings,
workshops, greenhouses, and medical facilities. Through this case study, the paper not only evaluates
the technical aspects of implementing ANNSs for heat demand forecasting but also addresses the real-
world challenges of data collection, processing, and integration into existing DHN systems. The
results suggest that ANNs can significantly improve heat demand forecasting accuracy, but practical
challenges such as data accessibility and the integration of predictive models into control systems
remain areas for further development.

The paper examines the various artificial neural network (ANN) models employed for
forecasting heat demand in district heating networks (DHNSs). The study assesses the effectiveness of
these models, including Long Short-Term Memory (LSTM) networks, Convolutional Neural
Networks (CNNs), and the Temporal Fusion Transformer (TFT), for accurately predicting heat load
profiles and providing reliable forecasts. The models are compared to the statistical SAR-IMAX
model to evaluate their relative performance in real-world applications.

Using a year’s worth of data from Stiftung Liebenau DHN, which encompasses multiple
energy sources like Combined Heat and Power (CHP), biomass, and natural gas, the study
demonstrates the potential of these Al-based methods. The data also includes diverse heat sinks, such
as residential buildings and greenhouses, which add complexity to the heat demand forecasting
process. The CNN model, despite achieving the lowest Mean Absolute Percentage Error (MAPE) of
27% for both summer and winter, and 17% for winter alone, faces challenges in prediction accuracy
due to the volatility and irregularity of the data. Nonetheless, the models successfully capture the
overall heat demand trend, though they struggle to predict peaks and fluctuations in demand. The
economic analysis further suggests that, despite the challenges, applying these predictive models
could significantly improve energy efficiency while offering economic benefits due to their relatively
low investment costs.

The paper focuses on the practical implementation and evaluation of Artificial Neural
Networks (ANNSs) for forecasting heat demand in district heating networks (DHNs). The study
specifically explores several ANN architectures, including Long Short-Term Memory (LSTM)
networks, Convolutional Neural Networks (CNNs), and the Temporal Fusion Transformer (TFT).
These models are tested against the traditional SAR-IMAX statistical model to assess their relative
effectiveness in predicting heat load and providing actionable forecasts.

The research uses data from the Stiftung Liebenau DHN, a local district heating network
located in Meckenbeuren, Germany. This data spans one year and incorporates diverse energy
sources, such as Combined Heat and Power (CHP), biomass, and natural gas, as well as a variety of
heat sinks, including residential buildings and greenhouses. These diverse components of the DHN
provide a complex landscape for heat demand forecasting, making the role of Al models particularly
important. The study reveals that while the CNN model demonstrates the lowest Mean Absolute
Percentage Error (MAPE) — achieving 27% for both summer and winter, and 17% for winter alone
— prediction accuracy is notably affected by data volatility and irregularity.

Despite these challenges, the Al models effectively capture the general heat demand trends,
though they struggle to predict sharp demand peaks and fluctuations. The paper further explores the
economic implications of using these predictive models, concluding that they can significantly
enhance energy efficiency within DHNSs, offering potential economic benefits due to their low initial
investment costs. The results underscore the promise of Al in optimizing heat demand forecasting,
despite the complexities of real-world data.

The study highlights the significance of accurate forecasting for the optimal operation of
district heating networks (DHNSs), particularly as these systems evolve towards more sustainable and
flexible models. Traditional DHNs, which have been central to urban heating infrastructures, are now
transitioning into 4th generation systems that incorporate renewable energy sources, lower
temperature operations, and advanced control strategies. These modern systems face unique
challenges, including integrating decentralized and variable renewable energy inputs, managing
bidirectional heat transfer with buildings, and customizing heat supply to meet dynamic demands.
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As the complexity of these networks grows, advanced predictive techniques become essential.
Such techniques must handle large volumes of diverse data and account for the various factors
influencing heat demand, including weather conditions, user behavior, and the availability of energy
sources. By utilizing predictive models, energy providers can anticipate heating needs with greater
accuracy, optimizing energy distribution, reducing operational costs, and achieving long-term energy
efficiency goals. Predictive modeling helps balance supply and demand, manage peak loads, and
integrate renewable energy more effectively, making it an essential tool for modern DHNs. The
adoption of Artificial Neural Networks (ANNSs) has emerged as a significant advancement, as these
models can capture complex, nonlinear relationships within heat demand data, something that
traditional statistical models struggle with. With the increasing availability of real-time data from
smart meters and 10T devices, ANNs can process this data to improve the responsiveness and
adaptability of DHNs, ultimately contributing to more efficient and sustainable heating systems.

The research delves into the application of Artificial Neural Networks (ANNSs) for heat
demand forecasting in district heating networks (DHNS). It evaluates several ANN architectures,
including Long Short-Term Memory (LSTM) networks, Convolutional Neural Networks (CNNSs),
and Temporal Fusion Transformers (TFTs), with the goal of enhancing the accuracy of heat load
predictions. These models are compared against the traditional SAR-IMAX statistical model to assess
their effectiveness in real-world applications.

Data from the Stiftung Liebenau DHN, which spans a year and includes a mix of energy
sources like Combined Heat and Power (CHP), biomass, and natural gas, as well as various heat sinks
such as residential buildings and greenhouses, is used for testing. The results show that while the
CNN model achieves the lowest Mean Absolute Percentage Error (MAPE)—27% for both summer
and winter, and 17% for winter alone—its performance is still affected by the volatility and
irregularity in the data. However, despite this, the models successfully capture the general trend in
heat demand. The study also finds that predicting demand peaks and fluctuations remains a challenge.
Additionally, an economic analysis indicates that, despite the issues with data volatility, the use of
these predictive models can significantly enhance energy efficiency and provide economic benefits
due to their relatively low investment costs.

The study investigates the practical application of Artificial Neural Networks (ANNSs) for
forecasting heat demand in district heating networks (DHNS), with a focus on improving operational
efficiency. The research compares multiple ANN architectures, including Long Short-Term Memory
(LSTM) networks, Convolutional Neural Networks (CNNs), and Temporal Fusion Transformers
(TFTs), to traditional forecasting methods like the SAR-IMAX model. The goal is to assess how well
these models predict heat demand and provide reliable forecasts that can aid in the optimization of
DHN operations.

Using a year's worth of data from Stiftung Liebenau DHN, which integrates various energy
sources such as Combined Heat and Power (CHP), biomass, and natural gas, as well as diverse heat
sinks including residential buildings, workshops, and greenhouses, the study evaluates the
performance of these Al-based models. Despite the CNN model achieving the lowest Mean Absolute
Percentage Error (MAPE) of 27% for both summer and winter, and 17% for winter alone, the
accuracy is still significantly affected by the irregularities and volatility present in the data. Although
the models effectively capture overall heat demand trends, predicting fluctuations and demand peaks
proves to be a more challenging task. However, the paper underscores that the use of these predictive
models can still lead to substantial improvements in energy efficiency, offering clear economic
benefits due to their relatively low initial investment costs. The research highlights the promise of
ANNSs for optimizing heat demand forecasting, even as challenges related to data volatility and
prediction accuracy remain.

The paper explores the application of Artificial Neural Networks (ANNS) in forecasting heat
demand within district heating networks (DHNSs), aiming to improve operational performance and
energy efficiency. It specifically evaluates several types of ANN architectures, including Long Short-
Term Memory (LSTM) networks, Convolutional Neural Networks (CNNs), and Temporal Fusion
Transformers (TFTs), in comparison with the traditional SAR-IMAX statistical model. The primary
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objective is to determine how well these models can predict heat demand and provide accurate,
interpretable forecasts for optimal DHN management.

The study uses data collected over the course of one year from Stiftung Liebenau DHN, which
involves various energy sources like Combined Heat and Power (CHP), biomass, and natural gas, as
well as multiple heat sinks such as residential buildings, greenhouses, and workshops. The results
indicate that while the CNN model achieves the lowest Mean Absolute Percentage Error (MAPE)—
27% for both summer and winter, and 17% for winter alone—the accuracy of predictions is notably
influenced by the volatility and irregularities in the data. Nevertheless, the models manage to capture
the general trends in heat demand, even though predicting demand fluctuations and peak periods
proves challenging.

Despite these challenges, the research concludes that the implementation of these predictive
models can significantly enhance energy efficiency. The economic analysis suggests that these
models offer substantial benefits, particularly due to their relatively low initial investment costs.
While the models are not flawless, their ability to improve energy forecasting makes them a promising
tool for the optimization of DHN operations.

Conclusions

The study demonstrates the potential of Artificial Neural Networks (ANNS) in improving heat
demand forecasting for district heating networks (DHNSs). The application of advanced ANN models,
including Long Short-Term Memory (LSTM) networks, Convolutional Neural Networks (CNNSs),
and Temporal Fusion Transformers (TFTs), offers significant advantages over traditional statistical
methods like the SAR-IMAX model, particularly in terms of capturing complex, nonlinear
relationships within the heat demand data.

Despite challenges such as data volatility and irregularity, the models successfully forecast
general trends in heat demand, although predicting demand peaks and fluctuations remains a
challenge. Among the ANN models, the CNN architecture showed the best performance, achieving
the lowest Mean Absolute Percentage Error (MAPE), particularly in the summer and winter seasons.
However, the overall accuracy of these models is influenced by the inherent variability of the data.

From an economic perspective, the study finds that the application of these predictive models
can result in substantial improvements in energy efficiency. The relatively low investment costs
associated with implementing these models offer clear economic benefits, especially in terms of
optimizing energy distribution and reducing operational costs. While further refinement is needed to
enhance their predictive accuracy, these models hold significant promise for the future of DHN
operation, contributing to more sustainable and resilient energy systems.

In conclusion, the integration of ANNs into DHN management has the potential to
revolutionize heat demand forecasting, providing not only operational advantages but also economic
and environmental benefits. The continued development and refinement of these models will play a
crucial role in achieving the broader goals of energy efficiency and sustainability in district heating
systems.
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QUALITY EVALUATION OF POLISH TIMESCALE FORECASTING USING GMDH
NEURAL NETWORK.

Abstract: The article discusses the results of evaluating the effectiveness of a forecasting system that employs a
Group Method of Data Handling (GMDH) neural network. This system was used to forecast the Polish Timescale
(UTC(PL)) based on hydrogen maser (HM) technology. It highlights how the use of this forecasting system for
implementing the UTC(PL) national timescale can yield a quality comparable to that of the best global timescales. The
study presents the forecasting outcomes for UTC(PL) based on two prepared time series (TS1 and TS2), with a
comparison to the UTC - UTC(k) values for the same scale. Excellent forecasting performance was achieved in cases 5
and 6, for both TS1 and TS2, as demonstrated by the forecast quality metrics. These findings indicate that the proposed
system ensures the UTC(PL) accuracy on par with the top international timescales. The results are expected to encourage
National Metrology Institutes (NMIs) lacking caesium fountain capabilities to adopt the UTC(K) steering system.

Keywords: forecasting, GMDH, neural network, UTC(PL), hydrogen maser, timescale, accuracy, National
Metrology Institutes

Introduction:

The article discusses the effectiveness of a forecasting system for the Polish Timescale
(UTC(PL)), using the Group Method of Data Handling (GMDH) neural network and hydrogen maser
(HM) technology. The research aims to show that applying this forecasting system to UTC(PL) can
achieve timescale quality comparable to the best timescales worldwide. Forecasting results are
presented for two time series, TS1 and TS2, and compared to UTC - UTC(k) values. The results
demonstrate excellent forecasting quality, with cases 5 and 6 achieving very good results, as
confirmed by forecast quality measures. The research concludes that the developed system ensures
UTC(PL) accuracy on par with the top global timescales, supporting its adoption by National
Metrology Institutes (NMIs) lacking caesium fountains.

The research presented in the article focuses on the effectiveness of a forecasting system for
the Polish Timescale (UTC(PL)), which is based on a GMDH (Group Method of Data Handling)
neural network. This system, designed for the Polish national timescale, is implemented with a
hydrogen maser (HM). The primary goal of the study is to demonstrate that the use of this forecasting
system can ensure that the quality of the Polish Timescale is comparable to that of the best global
timescales.

The forecasting system operates on two specially prepared time series, TS1 and TS2. These
series, along with the forecasted values for the Polish Timescale, are compared with the UTC -
UTC(k) values for this scale. The analysis confirms the high quality of the forecasts, particularly for
cases 5 and 6, where the system showed a high degree of accuracy. This is evident from the forecast
quality metrics and the minimal discrepancies observed between the predicted and actual values.
These findings suggest that the developed forecasting system allows for the accurate control and
correction of the UTC(PL) national timescale, placing it among the best-performing timescales
globally.

The research is particularly significant for National Metrology Institutes (NMls) that lack
caesium fountains, as it shows that adopting the UTC(K) steering system based on this neural network
approach could allow them to achieve similar high-quality results at a lower cost.

The second key factor influencing the forecasting quality is the quality of the prepared input
data. This aspect is heavily impacted by the method of data preparation as well as the quality of the
clock that realizes the UTC(K) timescale and its corresponding steering system. The author conducted
extensive research focused on improving the data preparation process, exploring various methods to
enhance the forecasting quality. These studies were presented in several works [1-12], and the
findings indicate that further improvements in data handling can lead to even better results.

In the specific context of UTC(PL) forecasting, the method proposed by the author for
generating UTC(k) scale forecasts using a GMDH neural network has been successfully applied. This
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approach uses data from hydrogen masers and commercial caesium atomic clocks to implement the
UTC(PL) timescale, aiming to achieve forecast accuracy comparable to the highest-performing
timescales. Notably, the forecasting system has been successfully integrated into the Polish Timescale
UTC(PL), confirming its potential for widespread application in national metrology institutes
(NMIs). This approach allows for continuous improvement and refinement of the timescale
forecasting process, making it more efficient and reliable in real-time operations.

The research conducted on the Polish Timescale (UTC(PL)) forecasting using the GMDH
neural network (NN) has led to the development of a forecasting system for UTC(K) timescales, as
described in the works of Sobolewski and others (2017). This system has been tested using the Polish
Timescale, which is based on a VCH-1003M hydrogen maser, selected for its precision and stability
among several available clocks at the GUM (Central Office of Measures). The goal of this work is to
demonstrate that the forecasting system enables the UTC(PL) timescale to achieve a level of accuracy
comparable to some of the best timescales, such as those implemented with hydrogen masers
supplemented by caesium fountains.

The research focuses on two prepared time series, TS1 and TS2, for use with the GMDH NN,
and compares the forecasted values against the BIPM-designated UTC values (xb(t)). The forecasting
results for both time series showed a high level of accuracy, with discrepancies consistently within
+10 ns, and for some periods, even below +6 ns. This indicates that the Polish Timescale is very close
in quality to the best global timescales.

The article also elaborates on the two main factors that influence forecasting quality: the
choice of neural network and the quality of the input data. A key component of the GMDH NN’s
success is its self-organizing nature, which allows it to adapt efficiently to new data and produce
reliable forecasts in real-time, as seen in the ongoing UTC(PL) steering process. This method has
been successfully applied in Poland, allowing for continuous updates to the national timescale,
positioning it among the highest-performing timescales globally

When developing the forecasting algorithm for UTC(K) using a GMDH neural network, the
Polish Timescale was implemented with a commercial caesium atomic clock, achieving a stability of
approximately 107(-14). The author highlighted that leading NMI laboratories typically use hydrogen
masers, often supplemented by caesium fountains, to implement UTC(k). Hydrogen masers offer
superior short-term stability at the 10°(-15) level compared to caesium clocks, which are better for
long-term stability.

The research showed that the GMDH-based forecasting system is versatile, achieving high-
quality predictions for both caesium and hydrogen maser-based timescales. This system has been
integrated into the Polish Timescale UTC(PL), which has demonstrated exceptional accuracy,
particularly since its application in 2016 at the GUM (Central Office of Measures) to control
UTC(PL). The improvements were substantial, contributing to a timescale that is now ranked among
the best globally.

The article aims to assess the effectiveness of the forecasting system applied to the Polish
Timescale (UTC(PL)), based on a method proposed by the author using a GMDH neural network.
This system is implemented on the VCH-1003M hydrogen maser, selected from several available
clocks at the GUM (Central Office of Measures) in Poland. The research demonstrates that the
developed forecasting system can achieve a level of precision for UTC(PL) comparable to the best
global timescales, including those based on hydrogen masers and caesium fountains. The article
emphasizes that the use of this system ensures high-quality timescale accuracy for UTC(PL),
positioning it as one of the top-performing timescales worldwide.

The article describes the construction of the TS1 and TS2 time series, which are essential for
the forecasting system based on the Group Method of Data Handling (GMDH) neural network. These
time series were developed to improve the accuracy of UTC(PL) forecasting. The time series include
phase time values (xa(t)) between the national time scale UTC(k) and the atomic clock, UTC -
UTC(K) values (xb(t)), and additional values (xbr(t)) representing the UTCr - UTC(K).

The research conducted from December 2020 to August 2023 focused on forecasting the
Polish Timescale (UTC(PL)), which is based on the VCH-1003M hydrogen maser. The forecasting
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used the prepared TS1 and TS2 time series and compared the predicted results with actual data
published by BIPM.

The study demonstrated that both time series provided highly accurate forecasts, with
discrepancies between the forecasted values (xbp(t)) and the BIPM data (xb(t)) being minimal, often
within a few nanoseconds. This indicates that the Polish Timescale has remained consistently
accurate, aligning closely with the best global timescales.

An essential part of the developed forecasting system based on the proposed procedure is the
block dedicated to preparing input data for the GMDH neural network (NN) in the form of time series.
The quality of the forecasts heavily depends on how this data is prepared. For the UTC(k) forecasting
research, two time series, TS1 and TS2, were developed, containing data with a one-day interval.

The TS1 time series consists of three data groups: phase time values (xa(t)) between 1 pulse-
per-second signals from the national UTC(K) timescale (UTCK(t)) and the atomic clock (clockk(t)),
xb(t) values representing the difference UTC - UTC(K), and xbr(t) values representing the difference
between UTCr and UTC(k). These relationships are defined as:

e xa(t) = UTCk(t) — clockk(t)
e xb(t) = UTC(t) — UTCk(t)
o xbr(t) = UTCr(t) — UTCk(t)

The xb(t) values are the data published by the BIPM in their "Circular T" bulletin. Since these
data are published for Modified Julian Dates (MJD) ending in 4 and 9, they are interpolated using the
Hermite polynomial (PCHIP function in MATLAB) to generate daily values. This interpolation helps
extend the number of historical data points, ensuring the GMDH NN has enough training data, as
insufficient data can hinder the training process.

The preparation method for TS2 is similar to TS1, but the data is split differently: the first
group consists solely of xb(t) values, while the second group consists only of xbr(t) values.

The forecasting process involves predicting xb(t) values. Using TS1, the output from the
GMDH NN for a forecast day (tp) is denoted as x1p(tp). By comparing this with the measured xa(tp)
for UTC(k) on that day, the forecast difference (xbp(tp)) is calculated as:

o xbp(tp) = x1p(tp) — xa(tp)

For TS2, the forecasting approach is similar, and the results can also be used to correct UTC(K)

values.

Conclusions.

The research demonstrates that the forecasting system based on the GMDH neural network
provides highly accurate predictions for the Polish Timescale (UTC(PL)), enabling it to achieve a
level of precision comparable to the best global timescales. The system's use of hydrogen masers,
along with well-prepared input data and the application of advanced forecasting techniques, ensures
that the accuracy of UTC(PL) remains within a narrow range, often within +£10 nanoseconds.

The developed system has proven to be effective in real-time forecasting and steering of
UTC(PL), which has significantly enhanced its performance. The approach has shown to be
adaptable, with minimal discrepancies between forecasted and actual data, making it a reliable tool
for maintaining precise timekeeping.

The research results indicate that the GMDH neural network is an optimal choice for
forecasting UTC(k) timescales, especially for national metrology institutes (NMIs) that do not have
access to high-cost equipment like caesium fountains. By using this system, such institutions can
achieve high-quality time scale predictions at a significantly lower cost.

Furthermore, the application of this forecasting system has contributed to the Polish Timescale
being classified among the top-performing timescales, demonstrating the practical benefits of
artificial intelligence in metrology. The continued use of this system ensures the ongoing precision
and reliability of UTC(PL), positioning it as a leading example of modern timekeeping technology.
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ROBUST TASK SCHEDULING IN ROBOTICS USING REINFORCEMENT LEARNING.

Abstract: Effective task scheduling plays a crucial role in enhancing performance, productivity, and profitability
across various real-world applications, including production lines, logistics, and transportation systems. While
traditional scheduling methods often rely on heuristics or basic rule-based strategies, the rise of machine learning and
artificial intelligence has spurred increased interest in leveraging these advanced technologies for task optimization.
Among these, reinforcement learning stands out as a promising approach due to its ability to learn from experience and
adjust to dynamic conditions. A frequently overlooked aspect, however, is the selection of optimal algorithm parameters
and the diverse ways in which the environment can be modeled. This study evaluates the potential of reinforcement
learning for task scheduling, offering a detailed analysis that aids in selecting the most effective environment models and
Q-learning parameters. Additionally, the study introduces an automatic parameter selection method based on
optimization algorithms. Despite these improvements, the system's adaptability to environmental changes remains
limited. This observation led the authors to propose a novel Hybrid Q-learning approach, designed to ensure higher
efficiency regardless of varying environmental factors.

Keywords: task scheduling, performance, productivity, reinforcement learning, optimization, Q-learning,
algorithm parameters, environmental adaptability

Introduction:

Effective task scheduling is crucial for enhancing performance, productivity, and profitability
across various fields like manufacturing, logistics, and transportation systems. Traditionally, task
scheduling has relied on heuristics and rule-based methods. However, with the growth of machine
learning and artificial intelligence, there is increasing interest in using these technologies for
optimization. Among these methods, reinforcement learning stands out because it can learn from
experience and adapt to changing conditions. A key element often overlooked is the selection of
optimal algorithm parameters and the modeling of the environment. This study evaluates how
reinforcement learning can improve task scheduling, providing insights into efficient environment
models and Q-learning parameters. Additionally, it proposes an automated selection process using
optimization algorithms. Despite these advancements, the system’s adaptability to environmental
changes remains limited, motivating the authors to develop a Hybrid Q-learning approach that ensures
superior efficiency under varying conditions.

In manufacturing, robotic arms are commonly used for various tasks, including pick-and-place
operations, welding, painting, palletizing, and sorting. Traditionally, robotic arms are programmed
manually due to a lack of advanced automatic algorithms that can deliver consistent, high-
performance results across different processes. The system’s performance, and consequently the
quality of the product, largely depend on the skills of the operator. Additionally, these tasks often
require collaboration between various machines, such as conveyor belts, mobile robots, and other
robotic arms. Although creating a real-world testing environment for development can be costly,
incorporating robotic arms into active production lines for experimentation is not a feasible option.
As an alternative, simulation-based training offers a cost-effective way to generate the required data,
though oversimplifying simulations can lead to discrepancies with real-world performance, resulting
in unsafe behavior when the system is deployed in real robots. To reduce the complexity of robotic
programming, tasks can be broken down into three sub-problems: task planning, task scheduling, and
motion planning.

Task planning involves selecting the sequence of actions needed to accomplish a given task.
Task scheduling determines the optimal order in which tasks are to be performed, while motion
planning focuses on developing collision-free strategies for moving the robot to its target destination.
Most task scheduling problems aim to improve production efficiency through better control or
optimized velocity profiles. Task scheduling is commonly used in fields such as public transport, grid
computing, and cloud systems. It can be categorized into static and dynamic scheduling; the former

215



involves pre-scheduling all tasks before execution, whereas dynamic scheduling adjusts decisions in
real-time. Many task scheduling problems are formulated as variations of the Traveling Salesman
Problem (TSP) or the Job Shop Scheduling Problem (JSSP), which are both NP-hard.

To address the task scheduling problem, machine learning techniques, particularly
reinforcement learning (RL), offer a promising solution. Machine learning, a subset of artificial
intelligence, enables systems to learn and improve over time without explicit programming, based on
various types of data. Among the different types of machine learning, reinforcement learning stands
out due to its ability to learn through interactions with the environment, unlike other methods that
rely on predefined datasets. The agent in RL receives feedback in the form of rewards or penalties,
depending on the actions it takes, and these interactions occur over multiple steps, called epochs. At
the end of each epoch, the environment is reset to its initial state. RL has been applied successfully
in diverse fields, such as energy system control, autonomous vehicles, traffic signal management,
cybersecurity, and humanoid robots.

Reinforcement learning algorithms include several variations, such as Q-learning, Deep Q-
learning, and Monte Carlo methods. Q-learning, in particular, is popular for its simplicity and ease of
implementation. This algorithm uses a Q-table, which represents the expected future rewards for
state-action pairs. However, the dimensionality of the Q-table increases exponentially with the
complexity of the problem, making it less suitable for more complex tasks. Although implementing
Q-learning is relatively straightforward, selecting optimal parameters for specific applications is not.
The existing literature often fails to justify or even present the chosen parameters, which can affect
the reproducibility of the results. Despite these challenges, RL continues to gain attention for solving
complex scheduling problems, especially in environments that change dynamically.

In situations where the task's success rate is used as a performance metric, achieving 100%
success is the maximum possible value. This threshold can serve as a stopping criterion for the
learning process. However, when the performance metric involves efficiency, such as the number of
products processed per hour, latency, or movement time, it becomes more challenging to determine
whether the solution provided by an algorithm is optimal and when to halt the learning process.

This issue is particularly relevant to robotic sorting systems, where a robotic arm is tasked
with selecting goods from three independent sources and sorting them into designated destinations.
The use of reinforcement learning (RL) can enhance the efficiency of the robotic arm by addressing
the task scheduling problem. The study focuses on analyzing the impacts of Q-learning parameters,
environment models, and reward functions, with the goal of improving system performance.
Predicting future states is also incorporated to further optimize the robotic sorting process.

In addition to the various combinations of algorithm parameters, choosing the right reward
functions, resetting modes, input parameters, or neural network sizes can be just as important, if not
more so. This paper presents a detailed analysis of these variables and proposes an automatic selection
process using optimization algorithms. Despite achieving optimal parameters for a predefined
environment, the solution may become inefficient when environmental conditions change. These
findings prompted the development of a Hybrid Q-learning approach, which ensures consistent
performance even when environmental factors fluctuate.

The proposed approach for task scheduling in robotic systems is based on an offline learning
process using a highly accurate environmental model. By optimizing this model, it ensures that the
efficiency of the robotic arm is maximized, even when environmental conditions change. The Hybrid
Q-learning approach is particularly effective because it can maintain high performance without
requiring constant adjustments during the operational phase, as opposed to traditional online learning
methods.

Experiments have shown that the Hybrid Q-learning approach significantly outperforms both
static scheduling and online learning algorithms. The offline learning process allows the model to
adapt to changes in the environment more efficiently, ensuring that the scheduling remains optimal
over time. In comparison, online learning methods require longer adaptation periods, during which
the performance is often lower.

216



The paper also demonstrates the resilience of this approach, showing that even after significant
environmental changes, the system can quickly adapt and continue to perform effectively. This is
achieved through the use of a pre-tuned Q-table that is capable of handling environmental variability
without losing efficiency.

This method not only provides a robust solution to task scheduling in robotic applications but
also offers a path forward for future enhancements, such as incorporating multi-agent systems and
improving motion planning and collision avoidance algorithms.

Two experiments were conducted to demonstrate the superiority of the proposed Hybrid Q-
learning approach. The first experiment involved the following steps: (i) optimization of the
scheduling using Q-learning based on the nominal parameters of the sorting stand, (ii) after 2 hours,
the environmental parameters were changed to those corresponding to Environment #2, (iii) a 12-
hour relearning period was initiated, and (iv) the final performance was measured using the learned
Q-table.

In the second experiment, the environment parameters were changed after 2 hours, with a one-
hour delay in the changes. The proposed approach was compared to static scheduling (which does
not adjust the task scheduling) and online learning, where either the previous Q-table was used as a
starting point (Online #1), or no prior knowledge was available (Online #2). The comparison involved
calculating the number of sorted products over a sliding window of 250 products, which represents
approximately 30 minutes of operation.

In the first experiment, keeping the scheduling fixed resulted in a decrease in performance,
while the Hybrid Q-learning approach demonstrated superior performance. The Online learning
methods, especially without prior knowledge, were found to be less efficient and resulted in
suboptimal scheduling after the learning period. These results confirm that the Hybrid Q-learning
approach significantly improves the efficiency of task scheduling in dynamic environments,
especially when changes in environment parameters occur during the task execution phase.

To assess the efficiency of the scheduling algorithms, the number of sorted products was
calculated as the average over a sliding window of 250 previously picked products, which
corresponds to approximately 30 minutes of operation. In the first experiment, where no change was
made to the scheduling, the results showed that keeping the scheduling static led to reduced
performance. On the other hand, the Hybrid Q-learning approach demonstrated consistently higher
efficiency. In the second experiment, where environment parameters were altered after two hours, the
proposed Hybrid Q-learning approach still outperformed static scheduling and online learning
methods, with or without prior knowledge of the system's Q-table.

The comparisons reveal that the Hybrid Q-learning approach was particularly advantageous
when the environment changed, as it was able to adapt faster and achieve higher performance than
other methods. The system's performance was tracked across various iterations, showing the
difference in the number of products sorted per hour. Notably, the Hybrid Q-learning method
delivered superior results by allowing the system to adapt during robotic arm movements, thus
optimizing task scheduling in real-time.

In contrast, online learning methods—especially those starting from scratch (Online #2)—
exhibited suboptimal performance due to their slow adaptation to environmental changes. Moreover,
these methods required additional time for learning, reducing their effectiveness in rapidly evolving
scenarios. The static scheduling approach, while more efficient than online methods in some cases,
could not adapt to changes in the environment and therefore was outperformed by the more dynamic
Hybrid Q-learning solution.

These findings highlight the superior efficiency and flexibility of the Hybrid Q-learning
approach in dynamic environments, making it a promising solution for task scheduling problems
where environmental conditions are subject to change.

The paper highlights the significance of selecting an appropriate environment model with
predictive capabilities and tuning the parameters of the Epsilon-Greedy Q-learning algorithm for
effective task scheduling. Three prediction strategies, four reward functions, three resetting modes,
and various robot arm history positions were analyzed to determine the best set of parameters,
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resulting in nearly 31 million possible combinations. The study demonstrates that when the
environment's behavior changes significantly—especially when predictive modes are involved—
there can be a drastic shift in the optimal Q-learning parameters. This emphasizes the need to regularly
update the Q-learning parameters to maintain efficiency under varying conditions.

Based on these findings, the authors propose a Hybrid Q-learning approach, which ensures
high efficiency from deployment to real-world environments by adapting the Q-table using simulation
learning throughout robotic arm operations. Experiments show that online relearning methods require
much more time to adapt, resulting in lower performance during the learning period. In contrast, the
proposed Hybrid Q-learning approach adjusts immediately, maintaining superior performance even
under changing conditions.

Looking ahead, the authors plan to expand this approach to handle multiple robotic arms and
address challenges like motion planning, collision avoidance, and multi-agent systems.

The authors plan to extend their work by focusing on task scheduling in environments with
multiple robotic arms. This future research will explore additional challenges, such as motion
planning, collision avoidance, and the application of multi-agent algorithms. These improvements
aim to further enhance the efficiency and adaptability of task scheduling systems in complex, dynamic
environments.
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ELASTIC CONSTANTS FROM ULTRASONIC DISPERSION IMAGES VIA NEURAL
NETWORKS.

Abstract: This paper introduces a method for determining the isotropic elastic constants of plate-like structures
by leveraging the dispersive characteristics of ultrasonic guided waves combined with neural networks. This is achieved
through the analysis of dispersion images. Two distinct neural network architectures are compared: one utilizing
convolutions and transfer learning based on EfficientNetB7, and another inspired by Vision Transformer approaches. To
support this, both simulated and experimental dispersion images are created, with the former being used for designing,
training, and validating the networks, while the latter serves for testing. During the training phase, various data
augmentation techniques are applied to the simulated data to replicate the artifacts present in the measured data,
enabling the networks to generalize from simulations to real-world measurements. The performance of the trained neural
networks is evaluated on dispersion images from seven different material samples, testing several variations of the
measured images to ensure prediction consistency. The study highlights that neural networks can successfully predict
isotropic elastic constants from experimental dispersion images, relying solely on simulated images for training and
validation, without requiring an initial estimate or manual feature extraction, and regardless of the measurement setup.
Additionally, the paper discusses the effectiveness of the different architectures for extracting information from dispersion
images and introduces a novel image-to-regression visualization technique.

Keywords: ultrasonic, guided waves, neural networks, dispersion images, isotropic elastic constants, transfer
learning, data augmentation, prediction stability

Introduction:

The article discusses a method that utilizes the dispersive behavior of ultrasonic guided waves
(UGWs) along with neural networks to determine the isotropic elastic constants of plate-like
structures through dispersion images. The authors compare two neural network architectures: one
based on convolutional layers with transfer learning using EfficientNetB7, and another using a Vision
Transformer-like approach. To implement this method, both simulated and measured dispersion
images are generated. Simulated images are used to design, train, and validate the neural networks,
while the measured images are used for testing.

During the neural network training, specific data augmentation layers are applied to introduce
artifacts typical in measurement data into the simulated data. These layers allow the neural networks
to extrapolate from simulated data to real-world measurements. The neural networks are trained on
images from seven known materials, and the study tests various variations of the measured images to
ensure the stability of predictions. The results show that the neural networks can predict the isotropic
elastic constants from measured dispersion images using only simulated data for training and
validation, without the need for an initial guess or manual feature extraction, regardless of the
measurement setup. The paper also discusses the suitability of the different architectures for
extracting information from dispersion images and presents an image-to-regression visualization
technique.

This approach promises automation of the material characterization process by eliminating
the need for initial guesses or manual data extraction, and it is applicable across different
measurement setups.

The paper utilizes a semi-analytical numerical simulation method, known as the Scaled
Boundary Finite Element Method (SBFEM), to simulate dispersion images for structures with defined
elastic constants. These simulated dispersion images are generated by solving the eigenvalue problem
of the SBFEM equation for specific wavenumbers, resulting in corresponding frequency values. The
isotropic elastic constants are evenly distributed within the dataset to prevent neural networks from
overfocusing on any particular range. A total of 20,000 dispersion images are generated, covering the
specified range of values, as shown in Table 1. Additionally, a dataset containing 2,000 dispersion
images is randomly distributed for testing purposes.

219



The trajectory of the modes of ultrasonic guided waves (UGWSs) within a dispersion image in
the frequency-wavenumber domain is directly proportional to the thickness of the plate. To simplify
the simulation process and facilitate comparison across different plate thicknesses, the axes are
normalized by thickness. This method enhances the robustness of the material characterization by
making the comparison more straightforward. In these simulations, instead of directly using Young’s
modulus and density, two normalized quantities are applied:

Enorm =E/,0 and pnorm=1

where pnorm and the thickness are set to one. This leaves Enorm and Poisson’s ratio as the only
parameters to define the shape of the curves, which the models can learn and predict from the dataset/

The measurement data was recorded using the Verasonics Vantage 64 system, which has a
sampling frequency of 62.5 MHz. A phased array system, the Olympus 2.25-L-64-48X12-A2-P-2.5-
HY with 64 elements, is employed, where the first element excites the ultrasonic guided wave (UGW)
and the remaining 63 elements record it. The resolution along the frequency-wavenumber axis is
limited by the small number of elements and their minimal spacing, especially considering the axis
scaling by thickness in the dispersion images. The thickness of the specimen, a 300 x 300 mm plate,
is measured at each corner using a micrometer screw gauge, and the average value is used to calculate
the material's density.

The data is processed according to the procedures described in previous studies. Initially, a
Tukey window function (with oo = 0.3) is applied to the time and space data. The data is zero-padded
to the next larger power of two, ensuring it has at least 213 entries. The 2D Fast Fourier Transform
(FFT) is then applied, shifting the zero frequency to the center. Following this, the absolute values
are taken, and a quarter section of the dispersion image with positive group velocities is selected. The
image undergoes gamma correction and normalization before a 21-time blur filter smooths the
gradients within the pixels. An adaptive threshold function from OpenCV?2 is applied, and the image
is eroded and dilated multiple times to remove noise and adjust the image for further processing,
ultimately resizing it into a 600 x 600 binary array suitable for training the neural networks.

The neural networks are trained using both simulated and real-world data. To enhance the
training process, data augmentation layers are incorporated into the models. These layers randomly
apply augmentations to the simulated data, ensuring unique inputs during each training epoch. This
technique introduces artifacts typical of measurement data into the simulated dataset, allowing the
neural networks to learn how to extrapolate from simulated to measured data. The augmented images
simulate various measurement-related anomalies such as noise and spectral leakage, improving the
model's robustness to real-world variations.

It is crucial that these augmentations are integrated directly into the training process using
TensorFlow's syntax, enabling faster processing with GPU computing. Through these augmentations,
the model becomes more capable of handling imperfections in the measurement data, such as
variations in the mode shapes or artifacts caused by measurement noise. These techniques are shown
to improve prediction accuracy by making the neural networks more resilient to real-world challenges
during the testing phase.

The article explores the use of two advanced neural network architectures for predicting the
isotropic elastic constants from dispersion images of ultrasonic guided waves (UGWSs) in plate-like
structures. The two architectures compared are EfficientNetB7, a convolutional neural network
(CNN) with transfer learning, and a Vision Transformer model, both adapted for a regression task.
The networks are trained using simulated dispersion images and validated with real-world data.

A series of data augmentation techniques are employed to simulate measurement artifacts in
the training data, such as noise, dilation, and missing information, ensuring the neural networks can
generalize well when faced with imperfections in the measured data. The models are trained with
TensorFlow, utilizing a combination of Keras-Tuner and Hyperband for hyperparameter
optimization. The performance of these architectures is evaluated using seven different material
samples, with results showing that the Vision Transformer model tends to be more robust to variations
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in the dispersion images, while the EfficientNetB7 model is more sensitive to minor changes in the
data.

The study demonstrates the potential of neural networks for accurately predicting elastic
constants without the need for manual feature extraction or initial guesses, which is a significant
advantage over traditional methods that rely on explicit mathematical models. The article also
discusses how neural networks, especially CNNs and Vision Transformers, are capable of handling
complex, multi-modal information inherent in dispersion images, offering an automated and efficient
approach for material characterization.

The study focuses on using neural networks to predict isotropic elastic constants from
dispersion images, derived from ultrasonic guided wave propagation in plate-like structures. The
models analyzed include EfficientNetB7 and a Vision Transformer model. Both architectures were
adapted from classification tasks to solve this multi-output regression problem.

The training process utilized a mix of simulated and measured dispersion images, with
significant data augmentation techniques to mimic real-world imperfections, such as noise, dilation,
and spectral leakage. These augmentations helped the models generalize better, improving their
ability to predict material properties despite artifacts in the data.

The EfficientNetB7 model, based on convolutional layers, converged faster due to pre-trained
weights but was more sensitive to small changes in the input images. On the other hand, the Vision
Transformer model showed greater robustness to variations and outperformed the EfficientNet model
in prediction stability, particularly in the presence of measurement noise and artifacts.

Additionally, attention mapping techniques, such as Grad-CAM, were adapted for this
regression task to visualize how the models made predictions. This method revealed that the Vision
Transformer model was more capable of utilizing positional information and handling input
variations more effectively than the EfficientNetB7 model.

The models' performance was tested on a range of materials, showing that both architectures
could predict elastic constants with reasonable accuracy. However, the Vision Transformer model
exhibited superior consistency and robustness, suggesting that it is better suited for this type of
problem where positional information within the dispersion images is crucial. This approach, utilizing
neural networks for dispersion image analysis, presents a promising method for automated material
characterization in various industrial applications, especially in the presence of measurement noise
and variations.

The results of the study indicate that both EfficientNetB7 and Vision Transformer models
show high accuracy in predicting isotropic elastic constants, with Mean Absolute Percentage Error
(MAPE) for the simulated dataset at around 2.94% for EfficientNetB7 and 2.13% for Vision
Transformer, respectively. R? values were also high, demonstrating strong model performance. In
particular, the Vision Transformer model was found to be more robust when predicting the elastic
constants from the measured dispersion images, as it demonstrated better consistency in the presence
of noise and variations.

During testing on measured datasets, the models showed some variations in their predictions
depending on the image alterations. The addition of noise and small artifacts in the dispersion images
had a more significant impact on the EfficientNetB7 model, which was more sensitive to such
changes. However, the Vision Transformer model was less affected by these variations,
demonstrating its superior generalization ability in handling noise and measurement artifacts. This
robustness is thought to be due to the Vision Transformer’s capacity to analyze global relationships
in the image, as opposed to the convolutional layers of EfficientNetB7 that focus on local features.

The study highlights the importance of diverse test data for evaluating neural networks, as
models trained on simulated data may perform differently on real-world measurements with
additional noise and artifacts. Both models, despite their differences in architecture, provided similar
accuracy when predicting elastic constants for the material samples, with Vision Transformer slightly
outperforming the EfficientNetB7 model in prediction consistency.

These findings suggest that neural network models, particularly the Vision Transformer, can
be effective tools for material characterization, capable of predicting isotropic elastic constants with
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minimal pre-existing knowledge or manual feature extraction. The approach is promising for
automated applications, and the methods developed could be extended to the analysis of more
complex, anisotropic materials in future studies.

The study introduces an innovative approach for determining isotropic elastic constants using
neural networks to process dispersion images obtained from ultrasonic guided waves (UGWSs). This
method leverages the dispersive behavior of UGWSs and applies two different neural network
architectures: EfficientNetB7, a convolutional network with transfer learning, and a Vision
Transformer-like model. These architectures are tested on both simulated and measured dispersion
images, with the simulated data being used for training and validation, and the measured data for
testing.

The training process incorporates various data augmentation techniques to introduce real-
world artifacts, such as noise and spectral leakage, into the simulated data. This allows the neural
networks to generalize better, bridging the gap between the simulated and measured data. The models
are evaluated on seven different material samples to ensure prediction stability across a wide range
of real-world scenarios.

The results show that both models can accurately predict the isotropic elastic constants from
measured dispersion images, even when trained exclusively on simulated data. This method
eliminates the need for initial parameter guesses or manual feature extraction, offering an automated
solution that works independently of the measurement setup. The study also discusses the strengths
of each architecture in handling complex image data, with the Vision Transformer showing greater
robustness in predicting elastic constants across various conditions.
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MONITORING INSECT LARVAE GROWTH WITH REGRESSION CNN AND
KNOWLEDGE TRANSFER.

Abstract: Insect larvae breeding, particularly Tenebrio molitor and Hermetia illucens, has become increasingly
popular. Monitoring their size distribution and growth over time is essential, yet challenging due to the large number of
overlapping larvae in images. To address this, we propose an efficient method for determining larval size distribution
using a regression convolutional neural network (RegCNN) and knowledge transfer. We focused on larval width as the
main parameter, as it is easier to measure in dense scenes, with length (L) and volume (V) estimated indirectly through
regression models. The RegCNN was trained using knowledge transfer to minimize the time-consuming process of
labeling numerous images. The width quartiles were determined using an enhanced multistage phenotyping process based
on computer vision and a segmentation model. This approach required labeling only a few images for calibration. We
evaluated several RegCNN architectures, including pre-trained models (ResNet, EfficientNet) and a custom model. The
best model, ResNetl8, achieved an RMSE of 0.131 mm for larval width and 1.12 mm for length, with an R? of 0.870 and
an average inference time of 0.30 seconds. The custom architecture, TenebrioRegCNN_v3, was slightly less accurate but
five times faster in inference time. The results demonstrate the method's potential for real-world breeding applications.

Keywords: insect larvae, size distribution, regression, convolutional neural network, knowledge transfer,
segmentation, phenotyping, real-time monitoring

Introduction:

In recent years, there has been a surge in the popularity of breeding insect larvae, particularly
Tenebrio molitor and Hermetia illucens. A crucial aspect of managing insect larvae breeding is
monitoring their growth and size over time. However, determining the distribution of larvae sizes in
real-time presents a significant challenge, particularly due to the dense scenes in images where larvae
often overlap. To tackle this, we have proposed an efficient method for estimating the size distribution
of larvae. This approach leverages a regression convolutional neural network (RegCNN) combined
with knowledge transfer. The primary parameter measured was the larval width, as it is easier to
detect in dense scenes. Larval length (L) and volume (V) were estimated indirectly using regression
models for these parameters based on width.

The training of the RegCNN model was enhanced using knowledge transfer, which minimized
the need for extensive labeling of images with larvae at various stages of growth. For the training
process, we used width quartiles—Ilower quartile, median, and upper quartile—derived from a
multistage phenotyping approach. This method relied on classical computer vision techniques along
with a larvae segmentation model. This approach only required labeling a small subset of images for
calibration purposes. The study also explored different RegCNN architectures, both pre-trained on
ImageNet (such as ResNet and EfficientNet) and custom models with fewer parameters. The
proposed method was validated by evaluating larvae distributions characterized by width quartiles
ranging from 1.7 mm to 3.1 mm, which correspond to average larval lengths between 16 mm and 28
mm.

This method showed promising results, especially with the ResNet18 model, which achieved
a root mean square error (RMSE) of 0.131 mm for larval width estimation and an average RMSE of
1.12 mm for larval length estimation. The R? value for the model was 0.870, with an average inference
time of 0.30 seconds per box. The custom architecture, TenebrioRegCNN_v3, had slightly lower
accuracy but was about five times faster in inference time per image. The results validate the potential
of this method for real-world applications in insect larvae breeding.

The acquisition of images from insect breeding boxes was carried out under industrial
breeding conditions, using a machine vision system placed on an automated robot servicing the
breeding process. The images were captured with a color camera (GOX-12401C, JAI, Denmark) with
a resolution of 4096 x 3000 pixels. The camera was positioned at a distance that allowed for imaging
the entire surface of the box, with a resolution of 0.143 mm/pixel. The area was illuminated using
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cool white LED strips to minimize the impact on the insects during image capture. The raw images
were preprocessed to compensate for shading caused by insufficient lighting and to correct lens
distortion using a calibration method based on a gray pattern and a chessboard pattern.

For the phenotyping of larvae, the process involved segmenting the larvae from the images
using an instance segmentation model. The segmentation was followed by determining the size
parameters for each larva using classical computer vision techniques. Specifically, the width of each
larva was determined from the segmentation mask, and this measurement was used to calculate other
parameters such as length and volume indirectly using linear regression models. These models were
derived from larvae in the dataset D1, with 266 points used for the regression analysis.

To address challenges in segmenting individual larvae from densely packed scenes, synthetic
images were generated by placing individual larvae images onto a background. This approach was
essential for training the instance segmentation model, reducing the need for extensive manual
annotation.

This method of multistage phenotyping was crucial for training the regression convolutional
neural network (RegCNN), which allowed for the prediction of larval size quartiles directly from
input images. This solution significantly reduced the need for manual annotation, requiring only a
few images for calibration purposes. The use of synthetic images and knowledge transfer between
multistage phenotyping and RegCNN training allowed for faster and more accurate predictions in
real-world applications.

The improved multistage phenotyping method used in this study for larval size determination
relies on classical computer vision techniques. This method serves two purposes: it provides pseudo
target values for training the regression convolutional neural network (RegCNN) and helps define the
linear regression models for larval length and volume based on width measurements. The term
"pseudo target values" refers to the size estimates generated through this method, while "true target
values" are those derived from manually annotated larvae images.

Phenotyping can be applied either to a population of larvae within a single breeding box or to
individual larvae. For population phenotyping, the process involves determining the size parameters
such as the lower quartile (Q1), median (Q2), and upper quartile (Q3) for width, length, and volume.
In the case of individual larvae, the process begins with segmenting the larvae from the image using
an instance segmentation model. The next step is to determine the size parameters for each segmented
larva using classical computer vision methods.

The segmentation process provides a binary mask, which precisely defines the larva's location
in the image. For phenotyping, two sets of pixels are defined: those in the binary mask and those
along the contour of the mask. Phenotyping involves several steps, including the creation of a
smoothed skeleton of the larva and the calculation of the width based on sections perpendicular to the
skeleton. The method, which avoids issues found in previous skeletonization techniques, ensures that
the calculated larval width is accurate and robust, even for small or highly curved larvae.

To calculate the larval size parameters, a linear regression model was developed, establishing
relationships between the width of the larva and its length and volume. This approach allows the
indirect calculation of length and volume based on the measured width. The regression models were
trained using larvae extracted from the D1 dataset, providing a reliable basis for determining the size
parameters across different larvae populations.

The segmentation process itself involved an iterative improvement of the instance
segmentation model. Starting with a small dataset of synthetic larvae images, the model was
progressively refined by adding real data and increasing the diversity of the training set. This
multistage development process led to a significant improvement in the model’s ability to segment
larvae accurately across a range of sizes and conditions.

Finally, the use of this improved multistage phenotyping method in conjunction with the
RegCNN for predicting larval size quartiles enables real-time, scalable phenotyping of larvae
populations in industrial breeding environments. This hybrid approach, combining classical image
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processing techniques with deep learning, provides a powerful solution for efficient monitoring of
larval growth and development.

The width of the larvae was chosen as the main and directly measurable parameter due to its
ease of registration in dense scenes. However, from the breeder's perspective, the length is easier to
assess. Conversely, when assessing the volume or mass gain of the larvae during their growth, volume
becomes the more appropriate parameter. To enable the indirect calculation of length and volume
based on the measured width of the larvae, linear regression models for length (as a function of width)
and volume (as a function of width) were established.

These regression models were derived using larvae images from the D1 dataset, resulting in
266 data points for the regression analysis. The process included determining larval width as the
median of the lengths of sections perpendicular to the skeleton, which was defined by the binary mask
from the segmentation process. Volume was approximated by the sum of cylinder volumes, where
each cylinder represented a section of the larva with its length and width at the corresponding point
of the skeleton. A correction factor, determined experimentally, was applied to refine the calculations
of volume. This approach enabled the estimation of larval length and volume indirectly from the
width, leveraging the relationships established in the linear regression models.

This methodology provides a robust approach for calculating key size parameters (length and
volume) based on a simpler and more reliably measured parameter, larval width, and supports
efficient monitoring of larval growth in breeding environments.

The process of extracting individual larvae images and generating synthetic images plays a
critical role in the multistage phenotyping of larvae. The segmentation of larvae is carried out using
the Mask R-CNN instance segmentation model, which requires a set of labeled images. Labeling real
images is highly time-consuming, especially due to the dense scenes, where larvae overlap
significantly. To address this challenge, synthetic images with automatically generated labels are
used. The generation of synthetic images involves selecting larvae from a prepared pool of individual
larvae images and randomly placing them onto a background. This process is parameterized by the
degree of overlap between larvae instances and the number of larvae to be included in the image.

The pool of larvae instances used for generating synthetic images consists of larvae extracted
from the D1 dataset, which includes 266 individual larvae. These synthetic images are then used to
train the initial larvae segmentation model. The training process allows the model to improve its
ability to accurately segment larvae from new images, even in dense scenes. This approach, described
in detail in [1], model’s performance. The synthetic image generation process provides a foundational
dataset for developing robust instance segmentation models.

In the study, synthetic images were used to train the initial model, which was subsequently
tested and improved through several stages. The use of synthetic images and their automatic labeling
significantly reduced the time and effort required for manual annotation while enhancing the model's
ability to handle dense scenes efficiently. This approach allowed for the development of a larvae
segmentation model capable of being applied in real-world industrial breeding conditions, where
larvae are often densely packed and difficult to segment manually.

The larvae segmentation model was developed using a three-step approach, which
sequentially improved the model's performance. The first step involved training the model on 200
synthetic images created from 266 larvae instances. These images were generated using larvae
extracted from the D1 dataset. In the second step, the trained model was used to infer larvae from the
D3.TRAIN dataset, yielding larval mask proposals for 489 images. This stage increased the object
pool size to 65,000 larvae instances, and 1,000 synthetic images were generated for further model
training. The third step involved training the model on both real images and the synthetic data from
step two, treating the model’s predictions as pseudo labels for the real images.

This approach aimed to minimize user input during training and maximize efficiency by using
a combination of synthetic and real images. The segmentation model was trained with progressively
larger datasets to ensure its robustness in various breeding conditions. The resulting model showed a
significant improvement in larvae segmentation accuracy as the size of larvae increased, with the
model performing better for larger larvae (27-35 mm). The segmentation accuracy was assessed
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using AP50 and F1 scores, where the model showed sufficient accuracy for effective multistage
phenotyping, particularly in detecting and measuring larvae within breeding boxes.

To address the issue of detecting small objects with deep learning models, a correction factor
was introduced to adjust the calculated larval width quartiles. This factor compensates for variations
in detection accuracy depending on the larval size. It was expected that the correction factor would
decrease as the larval width increased. A diagram illustrating this correction factor as a function of
larval width is presented in the text.

The correction factor was calculated based on the D2 dataset, which included manually
labeled larvae instances. Histograms of larval widths were created from both the ground truth data
and the predictions generated by the larvae segmentation model. The correction factor for each width
interval was determined by dividing the histogram value of the ground truth by the predicted value.
Special handling was applied to cases where no predictions were made for a specific width, setting
the correction factor to 1 in these cases. The factor was adjusted at the boundaries of the width range
to maintain consistency.

This correction was necessary to improve the accuracy of the quartile values, especially for
smaller larvae that were often underdetected by the segmentation model. For widths below 2.0 mm,
the correction factor was higher due to the model's difficulty in detecting these smaller larvae. The
correction helped to minimize the overestimation of quartile values for these smaller larvae,
improving the overall accuracy of the model when estimating size parameters. The calibration curve
for the correction factor, as well as the impact on the final quartile calculations, is also discussed in
the text.

In this study, the main challenge addressed was the knowledge transfer between improved
multistage phenotyping based on classical computer vision methods and a regression convolutional
neural network (RegCNN). Knowledge transfer involved training the RegCNN on values derived
from the multistage phenotyping of larvae samples from the D3. TRAIN dataset. For each sample, the
lower quartile (Q1), median (Q2), and upper quartile (Q3) of larval width were determined.
Correction weights were incorporated during the calculation of quartiles, taking into account
observations from earlier sections.

The RegCNN was trained using these quartile values, allowing for the direct estimation of
larval width quartiles without analyzing individual larvae separately. The input to the RegCNN
consisted of 800x800 RGB images, and the model outputted the values for the three quartiles of larval
width. The training process minimized the mean squared error (MSE) loss, with the D3. TRAIN
dataset used for training. Pre-trained convolutional neural networks (CNNs) such as ResNet and
EfficientNet, along with custom architectures, were evaluated.

This approach successfully reduced the manual annotation effort, requiring only a few
manually labeled images for calibration. The final model achieved high accuracy with minimal
inference time, demonstrating its potential for real-time applications in large-scale insect larvae
breeding systems. The use of synthetic images for training the segmentation model further contributed
to the efficiency of the approach.

The regression convolutional neural network (RegCNN) developed in this study enables direct
estimation of larval width quartiles (Q1, median, Q3) from 800800 RGB images without requiring
individual larvae analysis. The model outputs the three quartiles for larval width based on the input
image. During training, the mean squared error (MSE) was minimized, using images from the
D3.TRAIN dataset, which were resized from 1024x1024 to 800800 pixels before input.

Pre-trained deep convolutional neural network architectures, such as ResNet18, ResNet50,
ResNet101, EfficientNet-b0, EfficientNet-b4, and MobileNetv2, were evaluated. Custom CNN
architectures with reduced complexity were also proposed. Fine-tuning was applied to all model
weights, including the convolutional and fully connected (FC) layers. For pre-trained models, the FC
layers were customized depending on the number of neurons in the input layer, with ReL.U activation
functions applied between layers.

The custom RegCNN architecture consisted of convolutional blocks followed by an FC block,
where the number of neurons in the hidden layers varied depending on the size of the input layer.
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Training parameters included a learning rate of 0.001, 200 epochs, and an Adam optimizer. The 'batch
size' was adjusted based on the GPU capabilities. Pre-processing involved standardizing pixel
intensity values in the R, G, and B channels according to ImageNet standards.

This setup aimed to efficiently estimate larval width quartiles while minimizing inference
time. The results showed that the RegCNN could be effectively trained using a knowledge transfer
mechanism from multistage phenotyping, requiring only a few manually labeled images for
calibration. This method demonstrated potential for real-time applications in large-scale insect larvae
breeding systems.

The larvae segmentation model's performance was evaluated in terms of the average precision
at 50% intersection over union (AP50) and F1-score across different larval size sets. The results
showed consistent improvements across successive stages of model training. Initially, when trained
only on synthetic images, the model achieved an AP50 of 75.0%, which improved to 79.2% after
further refinement with both synthetic and real images. The greatest improvement was observed in
larvae with smaller sizes (18-23 mm), where the AP50 increased from 61.7% to 72.1%, while for
larger larvae (27—35 mm), the model's accuracy remained high even in the first stage.

In the context of multistage phenotyping, the model's performance was highly sensitive to the
larval size, with better results for larger larvae. This observation highlights the necessity of adjusting
the calculation of quartiles for larval width in dense scenes, where smaller larvae may be
underrepresented or misclassified. These improvements were sufficient to meet the needs of large-
scale breeding systems, where quick and accurate larvae size monitoring is essential. The overall
system demonstrated robust performance with an acceptable trade-off between accuracy and
inference time, especially when processing large numbers of larvae in real-time.

The final validation of the model’s performance was carried out using a variety of metrics,
including the average precision at 50% intersection over union (AP50) and the F1-score. These
metrics were calculated for different larval size sets. The results showed significant improvement
across training stages. In the first stage, where only synthetic images were used, the model achieved
an AP50 of 75.0% on average. After including real images in the second stage, the AP50 improved
to 75.8%, with the most substantial increase observed for smaller larvae (18-23 mm), where the AP50
increased from 61.7% to 72.1%. The largest larvae (27-35 mm) showed high accuracy from the
beginning, with an AP50 of 86.2%.

The final stage of training, which combined both real and synthetic images, led to an average
AP50 of 79.2% and an F1-score of 0.824. For the larval size subset of 27-35 mm, the AP50 reached
86.0%, demonstrating the model’s strength in detecting larger larvae. These results confirmed the
effectiveness of the segmentation model for multistage phenotyping and emphasized the need for
adjustments when calculating quartiles for smaller larvae due to segmentation challenges. The model
was able to detect sufficient larvae instances, enabling accurate size parameter estimation for the
larvae population, even in dense scenes. The achieved metrics were sufficient to support real-time
applications in large-scale insect larvae breeding systems.

The analysis of inference time for the entire pipeline showed significant improvements with
the proposed solution. The CNN-based regressor had the shortest inference time at 0.30 seconds per
box, making it ideal for large-scale breeding applications where quick processing is crucial. In
comparison, the multistage phenotyping method, when analyzing all larvae (approximately 1,300 per
box), had a longer inference time of about 11 seconds per box. The second version of multistage
phenotyping, which limited the number of analyzed larvae to 50 and reduced the area of the analyzed
boxes to 25%, improved inference time to approximately 2.1 seconds per box.

In contrast, the reference method, based on the previous multistage phenotyping technique,
had significantly higher processing times, with inference times reaching up to 217 seconds per box.
This indicates that the proposed CNN-based regressor offers a considerable advantage in terms of
efficiency, especially in scenarios involving large numbers of boxes (>10,000).

The inference time breakdown for the approaches considered revealed that for the CNN
regressor with ROI relevance assessment, 33% of the total time was spent on extracting individual
larvae using YOLOv5m, while 63% and 85% of the time for the two versions of multistage
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phenotyping were spent on larvae segmentation using Mask R-CNN. These results highlight the need
for further improvements in the segmentation step, particularly for Mask R-CNN, which is currently
the bottleneck in the multistage phenotyping approach. Future work may involve replacing Mask R-
CNN with a faster model, such as YOLOVS8, to reduce processing times and improve overall
efficiency.

The study demonstrated the effectiveness of a regression convolutional neural network
(RegCNN) for determining the size parameters (width, length, and volume) of insect larvae,
particularly Tenebrio Molitor and Hermetia Illucens. By applying knowledge transfer between
improved multistage phenotyping methods and the RegCNN, the need for extensive manual
annotation was significantly reduced. The multistage phenotyping method provided pseudo target
values used for training the RegCNN, while linear regression models for length and volume were
derived from larval width.

The performance of the CNN regressor was validated using datasets with both pseudo target
values and manually annotated true target values. Results showed that the model achieved a high
coefficient of determination (R? = 0.870), with a root mean squared error (RMSE) of 0.131 mm for
larval width. The proposed method also offered a fast inference time of 0.30 seconds per breeding
box, making it suitable for real-time monitoring in large-scale breeding operations.

The study's findings indicate that this CNN-based solution strikes a balance between accuracy
and processing speed, making it a promising tool for the large-scale, automated monitoring of insect
larvae growth. Further work may focus on optimizing segmentation models and improving processing
times for even faster and more efficient applications in commercial breeding systems.

The study outlines several important directions for future work. These include the
development of models specifically tailored for inference in situations with very low larval densities,
which would address current limitations in performance when larvae are sparse. Additionally, further
reduction in the computational time for multistage phenotyping is a priority. This would allow this
approach to be incorporated into hybrid phenotyping methods, improving efficiency.

Another key area for future development is the creation of methods for larval segmentation
that can achieve similar accuracy across a broader range of larval sizes. Additionally, exploring
amodal segmentation models, which can estimate missing or occluded larvae segments, is another
promising direction. There is also potential in developing reference models for larval growth under
controlled feeding conditions, which could support more accurate monitoring and growth prediction.

Finally, the development of methods for detecting anomalies in larvae growth, based on
reference models, is another critical area for future research. These methods would be crucial in
identifying irregularities in growth patterns. Furthermore, maintaining and adapting the proposed
methods in the face of changes in data characteristics (domain shift) remains an important challenge
for ongoing research.
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HUMAN-IN-THE-LOOP ACTIVE LEARNING FOR TIME-SERIES ELECTRICAL DATA.

Abstract: Advanced machine learning models typically require extensive datasets and high-quality labels to
achieve optimal performance. While measurements are often readily available, the labeling process is frequently a major
bottleneck. Active learning methods aim to address this by utilizing the fact that different data points contribute varying
amounts of information to the model. However, these methods often make unrealistic assumptions, such as relying on an
oracle to provide flawless labels at a consistent cost and effort. In this work, we propose new active learning strategies
for classifying time series data, such as sensor measurements from fluctuating environmental conditions like electricity
usage. These strategies are particularly useful for applications like home energy management, where labeling data can
be a significant challenge. We introduce an innovative acquisition function that incorporates both model uncertainty and
labeling uncertainty, while also addressing class imbalance. Additionally, we propose a stopping criterion that halts the
active learning process once an optimal point is reached, minimizing the labeling effort. We also examine the impact of
labeling errors on model performance and suggest two methods to reduce their effects: (i) a re-labeling approach based
on label similarity, and (ii) a revised loss function that incorporates expert confidence levels. Our approach is validated
through energy disaggregation tasks in a real-world setting with three domain experts. The results show that our
methodology significantly enhances the performance of algorithms applied to new domains, reducing the number of
labeled samples required—by up to 61% for dishwashers and 93% for kettles.

Keywords: machine learning, datasets, labeling, active learning, time series, classification, uncertainty, energy
management

Introduction:

The first part of the text describes the challenges and solutions in applying machine learning
to time-series data, especially for electrical measurements in energy management applications. It
explains that advanced machine learning algorithms often require large datasets with accurate labels
to achieve optimal performance. However, while measurements are easy to collect, the labeling
process is a bottleneck. Active learning methods address this by selecting the most informative data
points for labeling, reducing the labeling effort. These methods exploit the fact that not all samples
contribute equally to model performance. However, many active learning approaches make
unrealistic assumptions, such as the availability of error-free labels at no extra cost.

The paper proposes a novel active learning approach for classifying time-series
measurements, typically from sensors measuring fluctuating environmental conditions such as
electricity consumption. This method is especially useful in home energy management, where
labeling data can be difficult. The authors introduce an acquisition function that accounts for both
model uncertainty and labeling uncertainty, ensuring balanced class distribution. A stopping criterion
is also proposed, which halts the active learning process once the optimal point is reached, minimizing
labeling effort. The paper also explores the impact of labeling errors and presents two methods to
mitigate them: (i) a re-labeling mechanism based on label similarity, and (ii) a revised loss function
that incorporates expert confidence levels.

The paper outlines the development of a human-in-the-loop active learning approach for time-
series data, specifically focused on electrical measurements from non-intrusive load monitoring
(NILM). The core idea is to address the challenges of labeling large datasets for machine learning
models by integrating human feedback into the active learning loop. This method involves using
human experts as a source of annotations, but unlike typical active learning models, it accounts for
potential human errors in labeling. The process works by first training a model on a small labeled
dataset, then iteratively selecting the most informative and diverse samples from a larger pool of
unlabeled data. These selected samples are then labeled by experts and added to the model for further
training.

The methodology includes a novel acquisition function, designed to balance class distribution
while considering both model uncertainty and labeling uncertainty. To minimize unnecessary
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labeling, a stopping criterion is introduced to halt the learning process once the model achieves
satisfactory performance. The approach also addresses potential errors in labeling by implementing
mechanisms for re-labeling and by incorporating expert confidence levels into the labeling process,
ensuring that uncertain or noisy labels are appropriately handled.

In real-world applications, this approach was tested on energy disaggregation tasks using
publicly available datasets. The experiments showed that the proposed method significantly reduces
the amount of labeled data required while maintaining or even improving model performance,
especially in scenarios where labeling errors could occur. This human-in-the-loop framework
enhances the model's ability to generalize to new, unseen data, demonstrating its effectiveness in
reducing labeling effort and improving model reliability in dynamic, real-world settings.

The paper introduces a human-in-the-loop active learning (HITL-ML) methodology applied
to time-series data, specifically for non-intrusive load monitoring (NILM). This method is aimed at
smart home energy management, addressing challenges related to labelling and model performance.
The system involves a process where the machine selects data samples to query, and a human expert
labels these samples. The expert also provides a confidence level for each label, which helps in
handling potential errors in the labels. This approach ensures that the machine can learn incrementally
until a stopping criterion is met.

The paper explores energy disaggregation, a process that separates a building’s aggregate
energy consumption into individual appliance usage. This fine-grained data can help with energy
conservation and demand response strategies. While deep learning models are typically used in
NILM, they require large labelled datasets for good performance, which are costly and time-
consuming to obtain. The study acknowledges this challenge and introduces strategies for reducing
the labelling effort.

By employing transfer learning techniques, the proposed method aims to improve the model’s
performance in new, unseen homes, even with minimal labelled data. Additionally, the paper
discusses how to mitigate the impact of labelling errors through re-labelling and expert confidence
mechanisms. These innovations reduce the need for extensive labelled data and enhance model
stability and transferability across different environments.

This methodology is validated in real-world scenarios, using publicly available datasets and
employing a deep neural network architecture designed for NILM. The results show that the approach
significantly improves the performance of pre-trained models when applied to new homes, ensuring
that even with limited labelled data, high-quality predictions can still be achieved.

In this study, the authors present an innovative active learning framework specifically
designed for time-series electrical measurement data, typically gathered through non-intrusive load
monitoring (NILM) systems used in energy disaggregation. The goal is to minimize the labeling effort
required while maintaining high model performance. The process starts by training a model using a
small set of labeled data, which is then expanded by selecting the most informative unlabeled samples
for labeling through active learning. The acquisition function identifies which samples are most
valuable to label, based on criteria such as uncertainty or informativeness.

The paper proposes a unique acquisition function that balances high-uncertainty samples with
those that contribute to model diversity, ensuring that the model learns from a broad set of data. This
acquisition function is designed to prioritize samples where the model’s predictions are uncertain, but
also includes samples that add variety to the dataset, particularly when the model starts to show high
confidence. Additionally, a stopping criterion is introduced to prevent unnecessary labeling. The
criterion terminates the active learning process once enough informative samples have been labeled,
reducing the total labeling effort required.

Another key aspect of the approach is the use of expert confidence levels during labeling. By
incorporating confidence scores from the experts, the model accounts for the potential variability in
label quality, giving more weight to highly confident labels during training. The proposed
methodology also includes a re-labeling mechanism that allows for correcting errors in labels based
on the model’s uncertainty, further enhancing the quality of the training data. The results demonstrate
the effectiveness of these techniques in real-world NILM applications, where labeling data can be
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both costly and time-consuming. The active learning strategy significantly improves model
performance with fewer labeled samples, making it a valuable tool for applications in energy
management and other domains requiring large datasets for model training.

The study evaluates the impact of labeling errors on the classification performance of time-
series electrical data in the context of non-intrusive load monitoring (NILM). When errors are
introduced during the labeling process, two main types of mistakes are considered: false positives and
false negatives. The analysis reveals that false negatives—where an appliance activation is missed—
have a more significant negative impact on the model's performance compared to false positives. This
Is because false negatives introduce additional negative samples that make it more difficult for the
model to identify the correct patterns, while false positives do not drastically change the model’s
ability to recognize important appliance activations.

The effectiveness of a re-labeling mechanism to address these errors is demonstrated, with
improvements in performance when mis-labeled samples are re-evaluated. The re-labeling
mechanism targets samples that the model has identified as potentially mislabeled, based on a low
match rate between predicted and actual labels. Once these samples are sent back for re-labeling, the
accuracy of the dataset improves, which in turn enhances the model's classification performance.

Additionally, the study explores the use of expert confidence levels to reduce the impact of
labeling errors. By incorporating confidence levels into the loss function during model training, the
model adjusts its learning process based on the certainty of the expert's labels. This helps in mitigating
the effects of potentially erroneous labels, especially when the data is noisy and the labels are less
distinct. The results confirm that using confidence levels in the training phase improves model
performance, particularly for appliances with less distinct activation patterns.

The experiments aim to evaluate the effectiveness of the proposed acquisition function,
stopping criteria, and the human-in-the-loop active learning approach for classification of time-series
electrical measurement data, particularly in the context of non-intrusive load monitoring (NILM).
The primary goal is to assess the impact of the new acquisition function against traditional
benchmarks and to test the re-labelling mechanism's effectiveness.

In the first experiment, the focus is on transfer learning with labels obtained via submetering,
where samples from a query pool are labeled using submetered electricity consumption
measurements. This experiment simulates labeling errors, including false positives and false
negatives, to evaluate how the proposed approach handles inaccuracies. By applying the acquisition
function, which incorporates model uncertainty and class balancing, the active learning process
selects the most informative samples for labeling. This ensures the model learns from diverse data
points, and the re-labelling mechanism can correct any erroneous labels. Additionally, simulated
confidence levels are used to mitigate the effects of labeling errors, emphasizing the importance of
expert confidence when providing labels.

The second experiment moves from simulated to real-world conditions, where experts provide
labels during the active learning process. In this case, the quality of the labels is assessed based on
the expert's confidence level, assuming that lower confidence correlates with a higher likelihood of
error. This setup mimics a real-world scenario where labeling can be subjective and error-prone. The
results highlight the importance of incorporating expert confidence into the learning process,
demonstrating that models can be significantly improved even with a relatively small number of
labeled samples.

Both experiments utilize a user interface developed to assist experts in the labeling process.
This interface displays time-series data, allowing experts to quickly annotate windows of electrical
consumption with confidence levels. The user-friendly design helps facilitate accurate and efficient
labeling, which is crucial for the success of the active learning approach in real-world applications.

The results from both experiments show that the proposed methods effectively reduce labeling
effort, improve model performance, and ensure the model can adapt to new, unseen data with minimal
labeling.

The study explores the performance of different acquisition functions used in active learning
for non-intrusive load monitoring (NILM). Specifically, it compares the proposed acquisition
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function, which incorporates model uncertainty and class balancing, with well-established
benchmarks such as pool-based and stream-based uncertainty, BADGE, and CLUE. The results show
that the proposed method outperforms other functions in terms of F1-score, especially for appliances
with challenging signatures, such as kettles and microwaves, in the REFIT house 5 dataset.

The experiments also highlight the effectiveness of the proposed stopping criterion, which
minimizes labeling effort while maintaining performance. By halting the active learning process once
the model reaches an optimal performance point, this criterion significantly reduces the need for
further labeling with only a slight performance trade-off. This early stopping method is shown to save
considerable effort in labeling without compromising the model's accuracy.

Additionally, the paper examines the impact of labeling errors, particularly false negatives
and false positives, on model performance. It is demonstrated that false negative errors (mislabeling
appliance activations as non-activations) are particularly detrimental, especially for appliances with
short activation durations, such as kettles. On the other hand, false positive errors (mislabeling non-
activations as activations) are less impactful, as they typically do not cause the model to forget
previously learned patterns. The study further evaluates a re-labeling mechanism that improves model
performance by correcting erroneous labels, particularly when false negatives are present.

Finally, the integration of expert confidence into the labeling process is tested. This
mechanism assigns greater weight to labels given by experts with higher confidence, thus improving
the reliability of the labeled data and enhancing the model's performance. The results from these
experiments provide valuable insights into how human-in-the-loop strategies can significantly
improve active learning for NILM, even in the presence of labeling errors.

The experiments evaluate the performance of the proposed active learning acquisition
function by comparing it to established benchmarks. In this study, different methods such as pool-
based uncertainty, stream-based uncertainty, BADGE, and CLUE are tested. The proposed method,
which incorporates both model uncertainty and class balancing, shows comparable results to these
benchmarks, achieving high F1-scores while reducing the number of labeled samples. Notably, the
proposed method efficiently handles the challenge of selecting informative samples, balancing the
trade-off between early-stage performance improvement and long-term learning stability.

Additionally, the paper introduces a stopping criterion designed to minimize labeling effort
once the model has achieved optimal performance. This approach effectively reduces the need for
continued labeling while maintaining accuracy, showing minimal performance loss after halting. The
stopping points are determined based on the number of high-uncertainty samples present in the query
pool. This method significantly saves labeling resources without compromising the performance of
the model.

Furthermore, the impact of labeling errors is explored, specifically focusing on false negative
and false positive errors. The study shows that false negatives—incorrectly labeling appliance
activations as non-activations—have a larger negative impact on performance, particularly for
appliances with brief activation periods. The re-labeling mechanism introduced in the study helps
correct these errors, thus enhancing the model's robustness and accuracy. Lastly, the inclusion of
expert confidence levels in the labeling process further improves model performance, especially in
the presence of noisy or challenging samples. This approach is validated through real-world
experiments, where even with labeling errors, the model shows improved performance through the
use of active learning strategies.

The experiment results, shown in figures and tables, compare the performance of the proposed
active learning acquisition function with various state-of-the-art methods. The main goal is to reduce
labeling efforts while maintaining or improving model accuracy for non-intrusive load monitoring
(NILM). The results reveal that the proposed function significantly reduces labeling effort by
selecting more informative samples and stopping the process at an optimal point. Specifically,
labeling effort is reduced by up to 93% for certain appliances in the UK-DALE dataset, and between
61% and 88% in the REFIT dataset.

The results also demonstrate that even when errors, such as false positives and false negatives,
are introduced into the labeling process, the active learning methodology continues to enhance model
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generalization across different datasets. The proposed re-labeling mechanism further improves the
model by identifying potentially erroneous labels and correcting them. Moreover, incorporating
expert confidence into the process prevents a decline in performance due to the accumulation of
inaccurate labels. These results validate the effectiveness of the human-in-the-loop approach,
particularly in real-world scenarios where labeling can be error-prone.

Furthermore, the performance of the acquisition function is compared to traditional methods
like pool-based and stream-based uncertainty functions, as well as more advanced techniques such as
BADGE and CLUE. The proposed approach shows competitive or superior results, especially in
terms of achieving high F1-scores with fewer labeled samples. The stopping criterion also plays a
crucial role in preventing unnecessary labeling, showing that early stopping leads to minimal
performance loss with significant resource savings.
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GAN-BASED INVERSE DESIGN OF SOFT MORPHING COMPOSITE BEAMS.

Abstract: Designing structures with customized properties presents a significant challenge due to the multitude
of potential solutions that can meet specified criteria. In the case of morphing composite beams, for instance, various
fabrication strategies are possible, as parameters such as material, geometry, and actuation mechanisms can be altered.
Additionally, these problems often involve strong nonlinearities arising from large deformations. To address these
complexities, we introduce a generative adversarial network (GAN)-based inverse design framework tailored for the
development of soft composite beams capable of morphing into predefined shapes and executing intricate motions. Our
method leverages composite materials comprising both passive and active layers, which deform into target configurations
due to strain mismatches driven by non-uniform geometric and material properties combined with temperature-induced
actuation. To expedite the exploration of the design parameter space, we devised a mechanical analog — a simplified
"toy model" — that replaces thermal actuation with the mechanical stretching of highly elastic active layers. This analog
allows for faster testing and evaluation of design parameters. Through experimental and numerical validation, we
demonstrated the efficacy of our approach. The generator component of the GAN takes target shapes as inputs and
outputs the corresponding fabrication parameters for creating composite beams that autonomously deploy into desired
configurations upon release. Furthermore, we extended this methodology to produce design parameters for composite
beams capable of complex, temperature-actuated movements. Our data-driven framework is both straightforward and
robust, offering solutions to intricate design challenges. It holds promise for advancing the development of soft robotics
and smart deployable structures, paving the way for innovative applications in these domains.

Keywords: inverse design, composite beams, generative adversarial networks, morphing structures, strain
mismatch, active layers, soft robotics, deployable structures

Introduction:

The design of structures with specific, customized properties often presents significant
challenges, primarily due to the existence of multiple possible solutions that can fulfill the same set
of prescribed conditions. This complexity becomes even more pronounced in scenarios such as the
creation of morphing composite beams. In these cases, the choice of materials, geometric
configurations, and actuation methods introduces a broad spectrum of potential fabrication solutions.
Compounding this challenge is the inherent nonlinearity of such problems, driven by the large
deformations that occur during the structural transformation.

To tackle these issues, we propose a novel method based on generative adversarial networks
(GANS) to facilitate the inverse design of soft composite beams. These beams are engineered to
morph into predefined shapes and perform intricate, prescribed motions. Our approach incorporates
the use of layered composite materials, consisting of both passive and active layers. The deformation
into target shapes is achieved through strain mismatches caused by non-uniform geometric and
material properties, in conjunction with temperature-induced actuation.

To expedite the exploration of the parametric space and streamline the validation of our
method, we developed a simplified mechanical analog. This "toy model™ uses mechanical stretching
of highly elastic active layers to mimic the effects of heating and cooling. Through experiments and
simulations, we demonstrate the efficacy of this model. The generator component of the GAN
receives target shapes as inputs and outputs corresponding design parameters, enabling the fabrication
of composite beams that self-deploy into the desired configurations upon release.

The second part of the text describes the concept and challenges of designing deployable
beams with predefined shapes. In this approach, the target final configurations of the structure are
known in advance, while the fabrication parameters required to achieve these configurations remain
to be determined.

The foundational idea involves starting with a flat, thin elastic material layer. This base layer
is then bonded with pre-stretched layers, which are strategically placed either on its top or bottom
surface to induce specific curvatures. These pre-stretched layers store elastic potential energy that
drives the deformation of the composite beam into its intended shape once released. The design
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parameters—such as the amount of pre-stretch, layer dimensions, and material properties—must be
carefully optimized to achieve the desired outcomes.

A key innovation of this method is training a neural network model, specifically a generator
network, to predict the required design parameters for the target shapes. These parameters include the
amount of pre-stretch, the dimensions of each layer, and the material’s modulus of elasticity. The
generator network accepts the target shape as input and provides a detailed set of fabrication
parameters that ensure the structure morphs into the intended configuration.

Although this model currently focuses on single-use deformations (non-reversible morphing),
it provides a practical proof-of-concept for designing deployable structures. The same principles
could be extended to reversible mechanisms, such as heat-actuated systems, where the structure
returns to its original state upon cooling.

This simplified system not only allows for the rapid testing of design principles but also lays
the groundwork for more complex applications in smart materials and deployable systems, including
soft robotics and adaptive structures.

Next part introduces the generative adversarial network (GAN)-based model developed for
the inverse design of morphing structures. The GAN architecture comprises three interconnected
neural networks: the generator, the critic, and a pre-trained simulator. These components work
together to produce feasible design parameters that enable the fabrication of deployable composite
beams.

The generator network is responsible for creating candidate solutions for the design
parameters based on the input target shapes. It takes a normalized representation of the target
curvature, combined with random noise, to explore diverse design possibilities. The critic network
evaluates the feasibility of these generated parameters by comparing them to a library of known
feasible design samples. Through this adversarial process, the generator learns to produce realistic
and functional outputs.

To enhance accuracy, the GAN framework integrates a pre-trained simulator network. This
simulator predicts the expected shape of the composite beam based on the proposed design
parameters. By incorporating this additional layer, the model ensures that the generated solutions
closely align with the target shapes. The overall training process balances two key objectives:
feasibility (ensured by the critic network) and shape accuracy (guided by the simulator network).

The generator network architecture includes dense layers interspersed with batch
normalization and activation functions, designed to output five critical design parameters. These
parameters include layer dimensions, pre-stretch values, and material elasticity. The critic network,
with its leaky ReLU activations, focuses on identifying non-feasible designs and guiding the
generator to refine its outputs. The simulator network, resembling an inverted generator structure,
bridges the gap between the design parameters and the physical realization of the target shapes.

The training dataset, created specifically for this model, includes thousands of pairs of design
parameters and corresponding shape representations. This comprehensive dataset enables the neural
networks to learn the intricate relationships between input design variables and the resulting beam
shapes. Training involves alternating updates to the generator and critic networks, ensuring
convergence to a reliable solution.

This innovative approach demonstrates the potential of GAN-based frameworks to address
complex inverse design challenges. By generating accurate and feasible design parameters, the model
enables the rapid prototyping and fabrication of morphing composite beams with applications in soft
robotics, adaptive systems, and other advanced engineering domains.

This part focuses on the experimental fabrication of morphing composite beams using the
design parameters generated by the GAN-based model. The fabrication process begins with creating
silicone sheets of varying thicknesses using 3D-printed molds. These sheets serve as the foundational
materials for constructing composite beams.

Each active layer is carefully cut and stretched according to the generated design parameters,
which dictate the required dimensions and pre-stretch values. The stretched layers are then bonded to
a base layer using a silicone-based polymer adhesive to ensure a strong and durable connection. To
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maintain alignment during bonding, an apparatus consisting of 3D-printed parts, threaded rods, and
nuts is employed. This setup allows precise control over the stretching and placement of the active
layers.

The fabrication process involves positioning the pre-stretched layers on the base layer,
applying adhesive to the segment length, and securing the assembly with an acrylic plate and weights
to prevent misalignment. Once the adhesive cures, excess material is trimmed, and the composite
beam is released to deform into its target shape.

This methodical approach ensures that the fabricated beams closely resemble the target
configurations generated by the GAN model. The results validate the effectiveness of the model in
producing design parameters that translate into physical structures with the intended morphing
capabilities. Moreover, this fabrication workflow serves as a scalable and efficient process for
developing soft, deployable composite beams for advanced applications.

The process began by defining a set of target shapes, including complex configurations such
as waves, spirals, and circular forms, which served as inputs for the trained GAN model. The
generator network produced the design parameters necessary to fabricate these shapes, demonstrating
its ability to handle diverse and intricate geometries.

Fabricated composite beams were optically scanned and analyzed to compare their final
configurations with the target shapes. The results revealed excellent alignment between the predicted
and fabricated shapes, with minimal deviations. These deviations were attributed to minor
inaccuracies during the fabrication process, such as slight errors in cutting, bonding, or stretching the
active layers. Despite these challenges, the generated parameters consistently led to high-quality
morphing beams.

To further validate the model, creative shapes inspired by line art and handwritten designs
were used. The GAN model successfully generated parameters for these unique configurations,
showcasing its versatility. Additionally, the efficiency of the approach was highlighted by its ability
to generate thousands of design parameter combinations in seconds, a significant improvement over
traditional methods like evolutionary algorithms.

The study also included numerical comparisons of curvature radii, showing strong agreement
between the generated, simulated, and experimentally measured values. This robust performance
underscores the model's capability to handle complex inverse design problems, ensuring that the
fabricated beams meet precise specifications.

Overall, the results demonstrate the potential of this GAN-based approach for designing and
fabricating deployable composite structures with practical applications in areas such as soft robotics,
adaptive systems, and advanced engineering solutions.

Next part explores the extension of the GAN-based framework to design morphing composite
beams capable of achieving complex, temperature-actuated motions. This advanced implementation
replaces the pre-stretch parameter with the coefficient of linear thermal expansion, allowing the
beams to morph in response to controlled heating or cooling.

In this scenario, active layers are positioned either above or below the base layer, with their
deformation controlled by thermal loads. For instance, cooling the active layer on top induces positive
curvature, while heating it produces the opposite effect. This adaptation enables the creation of beams
that transition seamlessly between two or more predefined shapes based on temperature changes.

To demonstrate this capability, two morphing beams were designed. The first beam shifted
from a home position at a lower temperature to an end position at a higher temperature. Similarly, the
second beam showcased continuous motion between two target shapes as the temperature was
gradually increased. The generated design parameters for these configurations ensured consistent
geometric and material properties across all segments, with temperature being the sole variable.

Numerical simulations and experimental validation confirmed the model's effectiveness.
Despite minor deviations caused by inherent fabrication constraints, the results closely matched the
target configurations. This demonstrates the model's ability to generate reliable and accurate design
parameters for complex morphing motions.
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This extended approach highlights the versatility and robustness of the GAN-based
framework in addressing diverse inverse design challenges. It paves the way for innovative
applications in soft robotics, smart materials, and deployable systems, where temperature-actuated
motions play a critical role in functionality and adaptability.

Provides a summary of the research and highlights the achievements of the proposed method
for designing morphing composite beams. The study addressed the inverse design problem, where
the desired target shape of a self-deployable composite beam was predefined, but the necessary
fabrication parameters were unknown. By employing a machine-learning-driven approach, the
research introduced a robust generative adversarial network (GAN)-based framework to tackle this
challenge.

The core of the method involved three interconnected neural networks: a generator to propose
design parameters, a critic to ensure feasibility, and a simulator to validate the accuracy of these
parameters. Together, these networks worked seamlessly to generate fabrication guidelines for
composite beams that morph into specified shapes upon deployment. This data-driven model
leveraged strain mismatch in composite materials as a source of potential energy, eliminating the
need for external stimuli to trigger the shape transformation.

The experimental validation showcased the effectiveness of this approach. Several composite
beams were fabricated using the generated parameters, and their shapes closely aligned with the
predefined targets. The minimal deviations observed were primarily attributed to practical constraints
during the fabrication process, such as minor inaccuracies in layer bonding or material handling.

The study also explored more complex applications, including temperature-actuated
morphing beams capable of transitioning between multiple shapes. This extension demonstrated the
adaptability of the GAN-based framework in addressing diverse and challenging design problems.

The proposed method opens new avenues for creating advanced morphing structures,
including deployable systems and soft robotics, that combine simplicity in fabrication with high
functionality. Its ability to handle complex inverse design tasks with speed and precision underscores
its potential for practical implementation in engineering and materials science.
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